MicroRNA-mediated post-transcriptional regulation plays key roles in stem cell self-renewal and tumorigenesis. However, the in vivo functions of specific microRNAs in controlling mammary stem cell (MaSC) activity and breast cancer formation remain poorly understood. Here we show that miR-31 is highly expressed in MaSC-enriched mammary basal cell population and in mammary tumors, and is regulated by NF-κB signaling. We demonstrate that miR-31 promotes mammary epithelial proliferation and MaSC expansion at the expense of differentiation in vivo. Loss of miR-31 compromises mammary tumor growth, reduces the number of cancer stem cells, as well as decreases tumor-initiating ability and metastasis to the lung, supporting its pro-oncogenic function. MiR-31 modulates multiple signaling pathways, including Prlr/Stat5, TGFβ and Wnt/β-catenin. Particularly, it activates Wnt/β-catenin signaling by directly targeting Wnt antagonists, including Dkk1. Importantly, Dkk1 overexpression partially rescues miR31-induced mammary defects. Together, these findings identify miR-31 as the key regulator of MaSC activity and breast tumorigenesis.
Wound healing is essential for skin repair after injury, and it consists of hemostasis, inflammation, re-epithelialization, and remodeling phases. Successful re-epithelialization, which relies on proliferation and migration of epidermal keratinocytes, requires a reduction in tissue inflammation. Therefore, understanding the molecular mechanism underlying the transition from inflammation to re-epithelialization will help to better understand the principles of wound healing. Currently, the in vivo functions of specific microRNAs in wound healing are not fully understood. We observed that miR-31 expression is strongly induced in wound edge keratinocytes, and is directly regulated by the activity of NF-κB and signal transducer and activator of transcription 3 signaling pathways during the inflammation phase. We used miR-31 loss-of-function mouse models to demonstrate that miR-31 promotes keratinocyte proliferation and migration. Mechanistically, miR-31 activates the Ras/mitogen-activated protein kinase signaling by directly targeting Rasa1, Spred1, Spred2, and Spry4, which are negative regulators of the Ras/mitogen-activated protein kinase pathway. Knockdown of these miR-31 targets at least partially rescues the delayed scratch wound re-epithelialization phenotype observed in vitro in miR-31 knockdown keratinocytes. Taken together, these findings identify miR-31 as an important cell-autonomous mediator during the transition from inflammation to re-epithelialization phases of wound healing, suggesting a therapeutic potential for miR-31 in skin injury repair.
Hair follicles (HF) undergo precisely regulated recurrent cycles of growth, cessation, and rest. The transitions from anagen (growth), to catagen (regression), to telogen (rest) involve a physiological involution of the HF. This process is likely coordinated by a variety of mechanisms including apoptosis and loss of growth factor signaling. However, the precise molecular mechanisms underlying follicle involution after hair keratinocyte differentiation and hair shaft assembly remain poorly understood. Here we demonstrate that a highly conserved microRNA, miR-22 is markedly upregulated during catagen and peaks in telogen. Using gain- and loss-of-function approaches in vivo, we find that miR-22 overexpression leads to hair loss by promoting anagen-to-catagen transition of the HF, and that deletion of miR-22 delays entry to catagen and accelerates the transition from telogen to anagen. Ectopic activation of miR-22 results in hair loss due to the repression a hair keratinocyte differentiation program and keratinocyte progenitor expansion, as well as promotion of apoptosis. At the molecular level, we demonstrate that miR-22 directly represses numerous transcription factors upstream of phenotypic keratin genes, including Dlx3, Foxn1, and Hoxc13. We conclude that miR-22 is a critical post-transcriptional regulator of the hair cycle and may represent a novel target for therapeutic modulation of hair growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.