This Perspective describes the development of a family of copper(II)-catalyzed alkene difunctionalization reactions that enable stereoselective addition of amine derivatives and alcohols onto pendant unactivated alkenes to provide a range of valuable saturated nitrogen and oxygen heterocycles. 2-Vinylanilines and related substrates undergo alternative oxidative amination or allylic amination pathways, and these reactions will also be discussed. The involvement of both polar and radical steps in the reaction mechanisms have been implicated. Major product formation is a function of the lowest energy pathway, which in turn is a function of structural aspects of the various reaction components.
Isoxazolidines are useful in organic synthesis, drug discovery and chemical biology endeavors. A new stereoselective synthesis of methyleneoxy-substituted isoxazolidines is disclosed. The method involves copper-catalyzed aminooxygenation/cyclization of N-sulfonyl-O-butenyl hydroxylamines in the presence of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl radical (TEMPO) and O2, and provides substituted isoxazolidines in excellent yields and diastereoselectivities. We also demonstrate selective mono N-O reduction followed by oxidation of the remaining N-O bond to reveal a 2-amino-γ-lactone. Reduction of the γ-lactone reveals the corresponding aminodiol.
Enantioselective synthesis of α-aryl and α-heteroaryl piperidines is reported. The key step is an iridium-catalyzed asymmetric hydrogenation of substituted N-benzylpyridinium salts. High levels of enantioselectivity up to 99.3:0.7 er were obtained for a range of α-heteroaryl piperidines. DFT calculations support an outersphere dissociative mechanism for the pyridinium reduction. Notably, initial protonation of the final enamine intermediate determines the stereochemical outcome of the transformation rather than hydride reduction of the resultant iminium intermediate.
Spirocyclic ethers can be found in bioactive compounds. This copper-catalyzed enantioselective alkene carboetherification provides 5,5-, 5,6- and 6,6-spirocyclic products containing fully substituted chiral carbon centers with up to 99 % enantiomeric excess. This reaction features the formation of two rings from acyclic substrates, 1,1-disubstituted alkenols functionalized with either arenes, alkenes, or alkynes, and clearly constitutes a powerful way to synthesize chiral spirocyclic ethers.
Novel bidentate phosphine ligands BABIPhos featuring a biaryl bis-dihydrobenzooxaphosphole core are presented. Their synthesis was achieved via Pd-catalyzed reductive homocoupling of dihydrobenzooxaphosphole aryl triflates. An efficient route toward various analogues was also established, giving access to phosphines with different electronic and steric properties. The newly obtained ligands demonstrated high efficiency and selectivity in Rh-catalyzed asymmetric hydrogenation of di- and trisubstituted enamides. This new class of ligands is complementary to previously described bidentate benzooxaphosphole ligands BIBOP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.