Tourette Syndrome (TS) is a neuropsychiatric disorder characterized by the presence of motor and vocal tics. Major pathophysiological theories posit a dysfunction of the cortico-striato-thalamo-cortical circuits as being a representative hallmark of the disease. Recent evidence suggests a more widespread dysfunction of brain networks in TS including the cerebellum and going even beyond classic motor pathways.In order to characterize brain network dysfunction in TS, in this study we investigated functional and effective-like connectivity as well as topological changes of basal ganglia-thalamo-cortical and cortico-cerebellar brain networks. We collected resting-state fMRI data from 28 TS patients (age: 32 ± 11 years) and 28 age-matched, healthy controls (age: 31 ± 9 years). Region of interest based (ROI-ROI) bivariate correlation and ROI-ROI bivariate regression were employed as measures of functional and effective-like connectivity, respectively. Graph theoretical measures of centrality (degree, cost, betweenness centrality), functional segregation (clustering coefficient, local efficiency) and functional integration (average path length, global efficiency) were used to assess topological brain network changes.In this study, TS patients exhibited increased basal ganglia-cortical and thalamo-cortical connectivity, reduced cortico-cerebellar connectivity, and an increase in parallel communication through the basal ganglia, thalamus and cerebellum (increased global efficiency). Additionally, we observed a reduction in serial information transfer (reduction in average path length) within the default mode and the salience network.In summary, our findings show that TS is characterized by increased connectivity and functional integration of multiple basal ganglia-thalamo-cortical circuits, suggesting a predominance of excitatory neurotransmission and a lack of brain maturation. Moreover, topological changes of cortico-cerebellar and brain networks involved in interoception may be underestimated neural correlates of tics and the crucial premonitory urge feeling.
Consistent findings postulate disturbed glutamatergic function (more specifically a hypofunction of the ionotropic NMDA receptors) as an important pathophysiologic mechanism in schizophrenia. However, the role of the metabotropic glutamatergic receptors type 5 (mGluR5) in this disease remains unclear. In this study, we investigated their significance (using [11C]ABP688) for psychopathology and cognition in male patients with chronic schizophrenia and healthy controls. In the patient group, lower mGluR5 binding potential (BPND) values in the left temporal cortex and caudate were associated with higher general symptom levels (negative and depressive symptoms), lower levels of global functioning and worse cognitive performance. At the same time, in both groups, mGluR5 BPND were significantly lower in smokers (F[27,1] = 15.500; p = .001), but without significant differences between the groups. Our findings provide support for the concept that the impaired function of mGluR5 underlies the symptoms of schizophrenia. They further supply a new perspective on the complex relationship between tobacco addiction and schizophrenia by identifying glutamatergic neurotransmission—in particularly mGluR5—as a possible connection to a shared vulnerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.