To overcome the inherent demerit of low power factor existing in transverse-flux permanent-magnet (TFPM) machines, a tubular staggered-teeth TFPM linear machine is presented here. Linear alternator integrated with free-piston Stirling engines could offer a great potential in a wide variety of applications ranging from solar energy generation to space power supply. The thermal behaviour of the machine is studied using a three-terminal lumped-parameter thermal network (LPTN) to solve the problem of temperature overestimation of the traditional LPTN. The determination of thermal resistances and thermal parameters are introduced in detail. The temperatures of various components of the machine under different load conditions are calculated by both the three-terminal LPTN model and the numerical thermal model. Sensitivity analysis is carried out to study the influence of critical thermal parameters on the temperature rise of the machine. On this basis, the effectiveness of the forced air cooling is investigated. A prototype is fabricated and temperature experiment indicates that there is a good agreement between measurement and calculation.
This paper presents a novel staggered-teeth cylindrical transverse-flux permanent-magnet linear machine (TFPMLM), which aims to improve the power factor and force density. Due to the compact structure and high performance requirement, thermal problems should be seriously considered. The three-dimensional (3-D) temperature field model is established. The determination of convection heat transfer coefficients is discussed. Equivalent thermal conductivities of stator core and winding are given to simplify the analysis. With the thermal effect of the adhesive coatings among permanent magnets (PMs) and mover yoke taken into account, the temperature field distribution and variation rules of the TFPMLM are obtained using the finite volume method (FVM). The influences of slot filling factor and air flow velocity on the temperature field distribution are analyzed. It is found that the hottest spot of the TFPMLM appears in the middle of the end winding; and there is no risk of demagnetization for PMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.