Background
Acute kidney injury (AKI) is independently associated with morbidity and mortality in a wide range of surgical settings. Nowadays, with the increasing use of electronic health records (EHR), advances in patient information retrieval, and cost reduction in clinical informatics, artificial intelligence is increasingly being used to improve early recognition and management for perioperative AKI. However, there is no quantitative synthesis of the performance of these methods. We conducted this systematic review and meta-analysis to estimate the sensitivity and specificity of artificial intelligence for the prediction of acute kidney injury during the perioperative period.
Methods
Pubmed, Embase, and Cochrane Library were searched to 2nd October 2021. Studies presenting diagnostic performance of artificial intelligence in the early detection of perioperative acute kidney injury were included. True positives, false positives, true negatives and false negatives were pooled to collate specificity and sensitivity with 95% CIs and results were portrayed in forest plots. The risk of bias of eligible studies was assessed using the PROBAST tool.
Results
Nineteen studies involving 304,076 patients were included. Quantitative random-effects meta-analysis using the Rutter and Gatsonis hierarchical summary receiver operating characteristics (HSROC) model revealed pooled sensitivity, specificity, and diagnostic odds ratio of 0.77 (95% CI: 0.73 to 0.81),0.75 (95% CI: 0.71 to 0.80), and 10.7 (95% CI 8.5 to 13.5), respectively. Threshold effect was found to be the only source of heterogeneity, and there was no evidence of publication bias.
Conclusions
Our review demonstrates the promising performance of artificial intelligence for early prediction of perioperative AKI. The limitations of lacking external validation performance and being conducted only at a single center should be overcome.
Trial registration
This study was not registered with PROSPERO.
Background
Acute kidney injury (AKI) is independently associated with morbidity and mortality in a wide range of surgical settings. Nowadays, with the increasing use of electronic health records (EHR), advances in patient information retrieval, and cost reduction in clinical informatics, artificial intelligence is increasingly being used to improve early recognition and management for perioperative AKI. However, there is no quantitative synthesis of the performance of these methods.
Objective
To estimate the sensitivity and specificity of artificial intelligence for the prediction of acute kidney injury during the perioperative period.
Methods
Pubmed, Embase, and Cochrane Library were searched to 2nd October 2021. Studies presenting diagnostic performance of artificial intelligence in the early detection of perioperative acute kidney injury were included. Two independent evaluators extracted data. The risk of bias of eligible studies was assessed using the PROBAST tool.
Results
Nineteen studies involving 304,076 patients were included. Quantitative random-effects meta-analysis using the Rutter and Gatsonis hierarchical summary receiver operating characteristics (HSROC) model revealed pooled sensitivity, specificity, and diagnostic odds ratio of 0.77 (95% CI: 0.73 to 0.81),0.75 (95% CI: 0.71 to 0.80), and 10.7 (95% CI 8.5 to 13.5), respectively. Threshold effect was found to be the only source of heterogeneity, and there was no evidence of publication bias.
Conclusions
Our review demonstrates the promising performance of artificial intelligence for early prediction of perioperative AKI. Further studies should focus on the improvement of existing models, novel biomarkers, and clinical effectiveness.
Background: Acute kidney injury (AKI) is independently associated with morbidity and mortality in a wide range of surgical settings. Nowadays, with the increasing use of electronic health records (EHR), advances in patient information retrieval, and cost reduction in clinical informatics, artificial intelligence is increasingly being used to improve early recognition and management for perioperative AKI. However, there is no quantitative synthesis of the performance of these methods.Objective: To estimate the sensitivity and specificity of artificial intelligence for the prediction of acute kidney injury during the perioperative period.Methods: Pubmed, Embase, and Cochrane Library were searched to 2nd October 2021. Studies presenting diagnostic performance of artificial intelligence in the early detection of perioperative acute kidney injury were included. Two independent evaluators extracted data. The risk of bias of eligible studies was assessed using the PROBAST tool.Results: Nineteen studies involving 304,076 patients were included. Quantitative random-effects meta-analysis using the Rutter and Gatsonis hierarchical summary receiver operating characteristics (HSROC) model revealed pooled sensitivity, specificity, and diagnostic odds ratio of 0.77 (95% CI: 0.73 to 0.81),0.75 (95% CI: 0.71 to 0.80), and 10.7 (95% CI 8.5 to 13.5), respectively. Threshold effect was found to be the only source of heterogeneity, and there was no evidence of publication bias.Conclusions: Our review demonstrates the promising performance of artificial intelligence for early prediction of perioperative AKI. Further studies should focus on the improvement of existing models, novel biomarkers, and clinical effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.