We introduce a nonreciprocal nongyrotropic magnetless metasurface. In
contrast to previous nonreciprocal structures, this metasurface does not
require a biasing magnet, and is therefore lightweight and amenable to
integrated circuit fabrication. Moreover, it does not induce Faraday rotation,
and hence does not alter the polarization of waves, which is a desirable
feature in many nonreciprocal devices. The metasurface is designed according to
a Surface-Circuit-Surface (SCS) architecture and leverages the inherent
unidirectionality of transistors for breaking time reversal symmetry.
Interesting features include transmission gain as well as broad operating
bandwidth and angular sector operation. It is finally shown that the
metasurface is bianisotropic in nature, with nonreciprocity due to the
electric-magnetic coupling parameters, and structurally equivalent to a moving
uniaxial metasurface
International audienceA group-delay engineered noncommensurate transmission line two-port all-pass network for analog signal-processing applications is presented, analytically modeled, and experimentally demonstrated. This network consists of transversally cascaded C-sections, which are distributed implementations of the bridged-T equalizer lumped circuit. It is obtained by interconnecting the alternate ports of adjacent lines of a 2N -port coupled transmission line network with transmission line sections, and it is modeled using multiconductor transmission line theory with per-unit-length capacitance matrix C and inductance matrix L. By allowing the different C-sections of the network to exhibit different lengths, a generalized group-delay engineering procedure is proposed, where quasi-arbitrary group-delay responses are achieved by combining the group-delay responses of C-sections with different lengths. A computer design approach based on genetic algorithms is applied for synthesis, which consists of determining the structural parameters of the different C-section groups. Using this approach, noncommensurate networks are group-delay engineered in edge-coupled stripline technology, and Gaussian, linear and quadratic group-delay responses are realized. The theoretical results are validated by experiment. Finally, two application examples of analog signal processing-a tunable impulse delay line and a real-time frequency discriminator-using the proposed dispersive noncommensurate all-pass networks are presented
The paper presents partial overview of the mathematical synthesis and the physical realization of metasurfaces, and related illustrative examples. The synthesis consists in determining the exact tensorial surface susceptibility functions of the metasurface, based on generalized sheet transition conditions, while the realization deals with both metallic and dielectric scattering particle structures. The examples demonstrate the capabilities of the synthesis and realization techniques, thereby showing the plethora of possible metasurface field transmission and subsequent applications. The first example is the design of two diffraction engineering birefringent metasurfaces performing polarization beam splitting and orbital angular momentum multiplexing, respectively. Next, we discuss the concept of the "transistor" metasurface, which is an electromagnetic linear switch based on destructive interferences. Then, we introduce a non-reciprocal non-gyrotropic metasurface using a pick-up circuit radiator (PCR) architecture. Finally, the implementation of all-dielectric metasurfaces for spatial dispersion engineering is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.