Abstract. Traditional automata accept or reject their input, and are therefore Boolean. In contrast, weighted automata map each word to a value from a semiring over a large domain. The special case of lattice automata, in which the semiring is a finite lattice, has interesting theoretical properties as well as applications in formal methods. A minimal deterministic automaton captures the combinatoric nature and complexity of a formal language. Deterministic automata are used in run-time monitoring, pattern recognition, and modeling systems. Thus, the minimization problem for deterministic automata is of great interest, both theoretically and in practice.For traditional automata on finite words, a minimization algorithm, based on the Myhill-Nerode right congruence on the set of words, generates in polynomial time a canonical minimal deterministic automaton. A polynomial algorithm is known also for weighted automata over the tropical semiring. For general deterministic weighted automata, the problem of minimization is open. In this paper we study minimization of lattice automata. We show that it is impossible to define a right congruence in the context of lattices, and that no canonical minimal automaton exists. Consequently, the minimization problem is much more complicated, and we prove that it is NP-complete. As good news, we show that while right congruence fails already for finite lattices that are fully ordered, for this setting we are able to combine a finite number of right congruences and generate a minimal deterministic automaton in polynomial time.
Abstract. Traditional automata accept or reject their input, and are therefore Boolean. In contrast, weighted automata map each word to a value from a semiring over a large domain. The special case of lattice automata, in which the semiring is a finite lattice, has interesting theoretical properties as well as applications in formal methods. A minimal deterministic automaton captures the combinatorial nature and complexity of a formal language. Deterministic automata are used in run-time monitoring, pattern recognition, and modeling systems. Thus, the minimization problem for deterministic automata is of great interest, both theoretically and in practice. For deterministic traditional automata on finite words, a minimization algorithm, based on the Myhill-Nerode right congruence on the set of words, generates in polynomial time a canonical minimal deterministic automaton. A polynomial algorithm is known also for deterministic weighted automata over the tropical semiring. For general deterministic weighted automata, the problem of minimization is open. In this paper we study minimization of deterministic lattice automata. We show that it is impossible to define a right congruence in the context of lattices, and that no canonical minimal automaton exists. Consequently, the minimization problem is much more complicated, and we prove that it is NP-complete. As good news, we show that while right congruence fails already for finite lattices that are fully ordered, for this setting we are able to combine a finite number of right congruences and generate a minimal deterministic automaton in polynomial time.
Abstract. Traditional automata accept or reject their input, and are therefore Boolean. Lattice automata generalize the traditional setting and map words to values taken from a lattice. In particular, in a fully-ordered lattice, the elements are 0, 1, . . . , n − 1, ordered by the standard ≤ order. Lattice automata, and in particular lattice automata defined with respect to fully-ordered lattices, have interesting theoretical properties as well as applications in formal methods. Minimal deterministic automata capture the combinatorial nature and complexity of a formal language. Deterministic automata have many applications in practice. In [13], we studied minimization of deterministic lattice automata. We proved that the problem is in general NP-complete, yet can be solved in polynomial time in the case the lattices are fully-ordered. The multi-valued setting makes it possible to combine reasoning about lattice automata with approximation. An approximating automaton may map a word to a range of values that are close enough, under some pre-defined distance metric, to its exact value. We study the problem of finding minimal approximating deterministic lattice automata defined with respect to fully-ordered lattices. We consider approximation by absolute distance, where an exact value x can be mapped to values in the range [x−t, x+t], for an approximation factor t, as well as approximation by separation, where values are mapped into t classes. We prove that in both cases the problem is in general NP-complete, but point to special cases that can be solved in polynomial time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.