A novel human oncogene, designated vav, was generated by a genetic rearrangement during gene transfer assays. The vav oncogene directs the synthesis of a 3.0 kb mRNA from which we isolated a 2.8 kb‐long complementary DNA copy. Nucleotide sequence analysis of this vav oncogene cDNA clone revealed that its 5′ 167 bp were derived from pSV2neo DNA cotransfected as a selectable marker during gene transfer. The remaining 2597 bp were unrelated to genes included in current data banks, indicating that the vav oncogene is likely to be derived from a novel human locus. The vav oncogene cDNA clone encompasses a 2391 bp long open reading frame (ORF) capable of directing the synthesis of a 797 amino acid long polypeptide. The predicted vav oncogene protein sequence exhibits several motifs reminiscent of transcriptional factors. They include a highly acidic amino‐terminal region separated from two putative nuclear localization signals by a proline‐rich sequence, presumably a hinge region. In addition, we identified two zinc‐finger‐like domains, one of which conforms to the canonical pattern Cys‐X2‐Cys‐X13‐Cys‐X2‐Cys previously found to confer trans‐activating activity to the adenovirus E1A protein. Transcription of its normal allele, the vav proto‐oncogene, has been exclusively observed in cells of hematopoietic origin, including those of erythroid, lymphoid and myeloid lineages. These findings raise the possibility that this novel locus might play an important role in hematopoiesis.
Stimulation of the T-cell antigen receptor (TCR) induces activation of multiple tyrosine kinases, resulting in phosphorylation of numerous intracellular substrates. One substrate is p95vav, which is expressed exclusively in hematopoietic and trophoblast cells. It contains a number of structural motifs, including Src homology 2, Src homology 3, and pleckstrin homology domains and a putative guanine nucleotide exchange domain. The role of p95vav in TCR-mediated signaling processes is unclear. Here, we show that overexpression of p95vav alone in Jurkat T cells leads to activation of the nuclear factors, including NFAT, involved in interleukin-2 expression. Furthermore, p95vav synergizes with TCR stimulation in inducing NFAT- and interleukin-2-dependent transcription. In contrast, NFAT activation by a G-protein-coupled receptor is not modulated by p95vav overexpression, suggesting that the effect is specific to the TCR signaling pathways. Although removal of the first 67 amino acids of p95vav activates its transforming potential in NIH 3T3 cells, this region appears to be required for its function in T cells. We further demonstrate that the p95vav-induced NFAT activation is not mimicked by Ras activation, though its function is dependent upon Ras and Raf. Furthermore, the activating function of p95vav is blocked by FK506, suggesting that its activity also depends on calcineurin. To further dissect p95vav involvement in TCR signaling, we analyzed various Jurkat mutants deficient in TCR signaling function or TCR expression and showed that an intact TCR signaling pathway is required for p95vav to function. However, overexpression of p95vav does not appear to influence TCR-induced protein tyrosine phosphorylation or increases in cytoplasmic free calcium. Taken together, our data suggest that p95vav plays an important role at an yet unidentified proximal position in the TCR signaling cascade.
Activation of receptor-linked and cytoplasmic protein tyrosine kinases is crucial in the control of normal and abnormal cell growth and differentiation. Some substrates of protein tyrosine kinases such as phospholipase C gamma and ras GTPase-activating protein (GAP) contain sequences homologous to the src protein domains SH2 and SH3 (refs 3-9). The proto-oncogene vav is expressed in haematopoietic cells and its product Vav contains sequence motifs commonly found in transcription factors, such as helix-loop-helix, leucine-zipper and zinc-finger motifs and nuclear localization signals, as well as a single SH2 and two SH3 domains. Here we show that stimulation of T-cell antigen receptor on normal human peripheral blood lymphocytes or on human leukaemic T cells, and the crosslinking of IgE receptors on rat basophilic leukaemia cells, both promote the phosphorylation of tyrosine residues in Vav. Moreover, activation of the receptor for epidermal growth factor leads to marked tyrosine phosphorylation of Vav in cells transiently expressing vav, and Vav associates with the receptor through its SH2 domain. We propose that vav encodes a new class of substrates whose tyrosine phosphorylation may provide a mechanism for direct signal transduction linking receptors at the cell surface to transcriptional control.
H-2 gene transfection was used to restore expression of H-2K antigens in metastatic and non-metastatic subclones of a murine fibrosarcoma that lack their major histocompatibility complex-encoded H-2K antigens. De novo expression of H-2K reduced tumorigenicity and abolished the formation of metastasis in syngeneic mice. Expression of H-2K may lead to effective recognition of the disseminating tumour cells by the host immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.