With the implementation of China’s top-down CO2 emissions reduction strategy, the regional differences should be considered. As the most basic governmental unit in China, counties could better capture the regional heterogeneity than provinces and prefecture-level city, and county-level CO2 emissions could be used for the development of strategic policies tailored to local conditions. However, most of the previous accounts of CO2 emissions in China have only focused on the national, provincial, or city levels, owing to limited methods and smaller-scale data. In this study, a particle swarm optimization-back propagation (PSO-BP) algorithm was employed to unify the scale of DMSP/OLS and NPP/VIIRS satellite imagery and estimate the CO2 emissions in 2,735 Chinese counties during 1997–2017. Moreover, as vegetation has a significant ability to sequester and reduce CO2 emissions, we calculated the county-level carbon sequestration value of terrestrial vegetation. The results presented here can contribute to existing data gaps and enable the development of strategies to reduce CO2 emissions in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.