Multi-polarized antenna arrays have the ability to provide both the direction and polarization information of the incident signals, which is important in radar, sonar, wireless communication, remote sensing, and so on. In this paper, a diversely polarized linear array of sparsely located but identically oriented tri-polarized vector antennas (VAs) is designed for estimating the direction-of-arrival (DOA) and polarization parameters of the incident signals in the presence of antenna mutual coupling (MC). In order to reduce the inter-VA MC, a new type of sparse array geometry is proposed, wherein the minimum inter-VA spacing is constrained to be no less than one signal wavelength. Considering the intra-VA MC effect, a full-wave electromagnetic simulation is introduced to fit the manifold vector of an isolated VA. Based on the sparse VA array, a polarimetric subspace scheme is proposed for DOA and polarization estimation. When the knowledge about the intra-VA MC is a priori unavailable, an algebraic polarimetric blind scheme is also provided for DOA estimation. Computer simulations and real-world experiments (using an S-band 24-channel tri-polarized array system) validate the efficacy of the designed array geometry along with the parameter estimation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.