Carbon nanotube functional materials (CNTFMs) represent an important research field in transforming nanoscience and nanotechnology into practical applications, with potential impact in a wide realm of science, technology, and engineering. In this review, we combine the state-of-the-art research activities of CNTFMs with the application prospect, to highlight critical issues and identify future challenges. We focus on macroscopic long fibers, thin films, and bulk sponges which are typical CNTFMs in different dimensions with distinct characteristics, and also cover a variety of derived composite/hierarchical materials. Critical issues related to their structures, properties, and applications as robust conductive skeletons or high-performance flexible electrodes in mechanical and electronic devices, advanced energy conversion and storage systems, and environmental areas have been discussed specifically. Finally, possible solutions and directions are proposed for overcoming current obstacles and promoting future efforts in the field.
The continuous energy-harvesting in moisture environment is attractive for the development of clean energy source. Controlling the transport of ionized mobile charge in intelligent nanoporous membrane systems is a promising strategy to develop the moisture-enabled electric generator. However, existing designs still suffer from low output power density. Moreover, these devices can only produce short-term (mostly a few seconds or a few hours, rarely for a few days) voltage and current output in the ambient environment. Here, we show an ionic diode–type hybrid membrane capable of continuously generating energy in the ambient environment. The built-in electric field of the nanofluidic diode-type PN junction helps the selective ions separation and the steady-state one-way ion charge transfer. This directional ion migration is further converted to electron transportation at the surface of electrodes via oxidation-reduction reaction and charge adsorption, thus resulting in a continuous voltage and current with high energy conversion efficiency.
Recently, room-temperature flexible gas sensors have been widely studied because they can operate without being heated and create low-cost, low-power-consumption devices with long-term stability. Here, by designing the active material composition and structure, we report an electrospun carbon nanofiber (CNF) network grafted by two-dimensional MoS2 nanosheets and embedded CoS2 nanoparticles, which serves as a flexible gas sensor for various toxic or hazardous gases working at room temperature. In particular, the CNFs/CoS2/MoS2 hybrid films exhibit very high selectivity toward NO over other gases including NO2 and CH4, with selectivity coefficients (|S NO/S NO2 | and |S NO/S CH4 |) as high as 43 and 42 (defined as the ratio of responses between two gases). The sensor shows a linear relationship in the gas concentration range of 1–100 ppm and a stable response during repeated bending. Theoretical calculations suggest that MoS2 can be selectively n-doped by NO, while CoS2 can effectively capture NO molecules, leading to enhanced selectivity and sensitivity. Our large-area flexible sensors made by synergistic design have potential applications in biological and environmental areas for low-cost, selective detection of toxic or targeted gases.
The development of flexible and wearable electronic devices has put an increasing demand on electrode systems with seamless connection and high compatibility with the main device, in order to accommodate complex deformation conditions and maintain stable performance. Here, we present a carbon nanotube-integrated electrode (CNTIE) by wet-pulling the ends of a carbon nanotube (CNT) film to form condensed thin fibers that resemble conventional conducting wire electrodes. A flexible strain sensor was constructed consisting of the middle CNT film as the main functional part and the CNTIE as self-derived electrodes, with inherent CNT connection between the two parts. The sensor can be transferred to versatile substrates (e.g., balloon surface) or encapsulated in thermoplastic polymers, exhibiting a large linear response range (up to 1000% in tensile strain), excellent durability and repeatability over 5000 cycles, and the ability to detect smallto large-degree human body motions. In addition, the strain sensor based on the CNTIE hybrid film (MXene/CNT and graphene/ CNT) also shows superior linearity and stability at a strain range of 0−800%. Compared with the sensors using traditional silver wire electrodes and separately fabricated CNT fiber electrodes, our CNTIE plays an important role in achieving highly stable performance in the strain cycles. Our self-derived integrated electrodes provide a potential route to solve the incompatibility issues of conventional electrodes and to develop high-performance flexible and wearable systems based on CNTs and other nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.