Multi-target tracking, a high-level vision job in computer vision, is crucial to understanding autonomous driving surroundings. Numerous top-notch multi-object tracking algorithms have evolved in recent years as a result of deep learning’s outstanding performance in the field of visual object tracking. There have been a number of evaluations on individual sub-problems, but none that cover the challenges, datasets, and algorithms associated with visual multi-object tracking in autonomous driving scenarios. In this research, we present an exhaustive study of algorithms in the field of visual multi-object tracking over the last ten years, based on a systematic review approach. The algorithm is broken down into three groups based on its structure: methods for tracking by detection (TBD), joint detection and tracking (JDT), and Transformer-based tracking. The research reveals that the TBD algorithm has a straightforward structure, however the correlation between its individual sub-modules is not very strong. To track multiple objects, the JDT technique combines multi-module joint learning with a deep network framework. Transformer-based algorithms have been explored over the past two years, and they have benefits in numerous assessment indicators, as well as tremendous research potential in the area of multi-object tracking. Theoretical support for algorithmic research in adjacent disciplines is provided by this paper. Additionally, the approach we discuss, which uses merely monocular cameras rather than sophisticated sensor fusion, is anticipated to pave the way for the quick creation of safe and affordable autonomous driving systems.
The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe , a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.