Microtus fortis (M. fortis) so far is the only mammal host that exhibits intrinsic resistance against Schistosoma japonicum infection. However, the underlying molecular mechanisms of this intrinsic resistance are not yet known. Here we performed the first de novo genome assembly of M. fortis, comprehensive gene annotation and evolution analysis. Furthermore, we compared the recovery rate of schistosome, pathological change and liver transcriptome between non-permissive host M. fortis and susceptible host mouse at different time points after Schistosome infection. We reveal that Immune response of M. fortis and mouse is different in time and type. M. fortis activates immune and inflammatory responses on the 10th days post infection, involving in multiple pathways, such as leukocyte extravasation, antibody activation (especially IgG3), Fc-gamma receptor mediated phagocytosis, and interferon signaling cascade. The strong immune responses of M. fortis in early stages of infection play important roles in preventing the development of schistosome. On the contrary, intense immune response occurred in mouse in late stages of infection (28~42 days post infection), and cannot eliminate schistosome. Infected mouse suffers severe pathological injury and continuous decrease of important functions such as cell cycle and lipid metabolism. Our findings offer new insights to the intrinsic resistance mechanism of M. fortis against schistosome infection. The genome sequence also provides bases for future studies of other important traits in M. fortis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.