Brassinosteroids (BRs) and polyamines (PAs) are widely used to overcome abiotic stresses including salinity stress (NaCl) in plants. In the present investigation, we evaluated the co-application efficacy of 24-epibrassinolide (EBR, a highly active BR) and putrescine (Put, a PA) on the NaCl stress (75 mM and 150 mM) tolerance of <i>Lycopersicon esculentum</i> L. cv. kuber geeta plants. A small rise in protein content was recorded under salinity stress in comparison with untreated control. The NaCl stress was found to significantly enhance the activities of guaiacol peroxidase (GPOX) and superoxide dismutase (SOD); while decline in catalase (CAT) activity was recorded when compared with the untreated control. Salinity stress both at 75 mM and 150 mM was able to cause significant membrane damage as evidenced by an increase in the level of malondialdehyde (MDA) content over untreated control. The EBR and Put co-applications were able to improve protein content in NaCl stressed plants over only NaCl stressed plants. The co-applications of EBR and Put were able to significantly enhance the activities of CAT, SOD and GPOX in <i>L. esculentum</i> under salinity stress (75 mM and 150 mM) when compared with NaCl stressed plants alone. Major decline in the MDA level recorded for EBR and Put co-applications under NaCl stress revealed reduced membrane damages when compared with NaCl stressed plants alone. Our findings provide evidence that EBR and Put co-applications are effective in amelioration of NaCl stress in <i>L. esculentum</i>. Thus co-application potential of EBR and Put may acts an eco-friendly approach towards NaCl stress mitigation in economically important crops
Alternaria fruit rot is a major disease caused by Alternaria alternata (Fr.) Keissl., a prolific fungal pathogen. Among post-harvest diseases of tomato, fruit rot induced by A. alternata is the most damaging. Antifungal agents are widely used to control post-harvest management of tomato fruits. However, negative impacts of fungicidal residues in edible fruits and vegetables on human health cannot be over ruled. Eco-friendly ways of controlling Alternaria rot in tomato fruits offer a novel way of tomato rot management. The current study proposes an alternate method in controlling tomato fruit rots through Zanthoxylum armatum DC essential oil (EO) application. Gas chromatography-mass spectrometry profiling showed eucalyptol and sabinene as major components of Z. armatum EO. Furthermore, EO applied (0.5–4.5 μl/ml) showed significant inhibition of A. alternata growth (p > 0.05) at 4.5 μl concentration tested. Lipid peroxidation assays revealed significant reduction in membrane damage in tomato fruits treated by EO compared to alone inoculated fruits with A. alternata. Elevated activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase coupled with enhanced antioxidants such as ascorbic acid, glutathione, proline, and total phenols in EO-treated fruits may be linked with better fruit rot management than control fruits inoculated with A. alternata-induced rot alone. Mycelia and spore production was dramatically reduced in EO applied tomato fruits over A. alternata alone in tomato fruits (p > 0.05). Interestingly, free radical scavenging activities of EO applied tomato fruits showed significant improvement compared to only pathogen-inoculated tomato fruits. Findings propose practical utility of Z. armatum EO as a plant-based antifungal for post-harvest management of Alternaria rot in tomato fruits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.