Glycocalyx (GCX) is a thin layer of negatively charged glycoproteins that covers the vascular endothelial surface and regulates various biological processes. Because of the delicate and fragile properties of this structure, it is difficult to detect GCX morphologically. We established a simple method for a three-dimensional visualization of endothelial GCX using low-vacuum scanning electron microscopy (LVSEM) on formalin-fixed paraffin-embedded (FFPE) sections. Mouse kidney tissue was fixed with 10% buffered formalin containing 1% Alcian blue (ALB) via perfusion and immersion. FFPE sections were observed by light microscopy (LM) and LVSEM, and formalin-fixed epoxy resin-embedded ultrathin sections were observed by transmission electron microscopy (TEM). The endothelial GCX from various levels of kidney blood vessels was stained blue in LM and confirmed as a thin osmiophilic layer in TEM. In LVSEM, the sections stained by periodic acid methenamine silver (PAM) revealed the endothelial GCX as a layer of dense silver-enhanced particles, in both the samples fixed via perfusion and immersion. Correlative light and electron microscopy (CLEM) revealed the fine visible structure of endothelial GCX. This simple method using FFPE samples with ALB will enable the three-dimensional evaluation of endothelial GCX alterations in various human diseases associated with endothelial injury in future studies.
Gemcitabine (GEM) is an anticancer drug inhibiting DNA synthesis. Glomerular thrombotic microangiopathy (TMA) has been reported as an adverse effect. However, the precise mechanism of GEM-induced endothelial injury remains unknown. Cultured human umbilical vein endothelial cells (HUVECs) in the confluent phase were exposed to GEM (5–100 μM) for 48 h and evaluated cell viability and morphology, lectin binding concerning sialic acid of endothelial glycocalyx (GCX), and immunofluorescent staining of platelet–endothelial cell adhesion molecule (PECAM) and vascular endothelial growth factor receptor 2 (VEGFR2). The mRNA expression of α2,6-sialyltransferase (ST6Gal1), sialidase (neuraminidase-1: NEU-1), and interleukin (IL)-1β and IL-6 was also evaluated. GEM exposure at 5 μM induced cellular shrinkage and intercellular dissociation, accompanied by slight attenuation of PECAM and VEGFR2 immunostaining, although cell viability was still preserved. At this concentration, lectin binding showed a reduction of terminal sialic acids in endothelial GCX, probably associated with reduced ST6Gal1 mRNA expression. IL-1β and IL-6 mRNA expression was significantly increased after GEM exposure. GEM reduced terminal sialic acids in endothelial GCX through mRNA suppression of ST6Gal1 and induced inflammatory cytokine production in HUVECs. This phenomenon could be associated with the mechanism of GEM-induced TMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.