This paper focuses on the quantum amplitude estimation algorithm, which is a core subroutine in quantum computation for various applications. The conventional approach for amplitude estimation is to use the phase estimation algorithm, which consists of many controlled amplification operations followed by a quantum Fourier transform. However, the whole procedure is hard to implement with current and near-term quantum computers. In this paper, we propose a quantum amplitude estimation algorithm without the use of expensive controlled operations; the key idea is to utilize the maximum likelihood estimation based on the combined measurement data produced from quantum circuits with different numbers of amplitude amplification operations. Numerical simulations we conducted demonstrate that our algorithm asymptotically achieves nearly the optimal quantum speedup with a reasonable circuit length.Quantum computers are expected to allow us to perform high-speed computations over classical computations for problems in a wide range of scientific and technological fields. Environments in which quantum algorithms can be executed by real quantum devices are currently being provided [1][2][3]. Real quantum devices with several tens of qubits will soon be realized in near future, although those are the socalled noisy intermediate-scale quantum (NISQ) devices that impose several practical limitations on their Y. Suzuki, S. Uno: Equally contributing authors.
Recently we find several candidates of quantum algorithms that may be implementable in near-term devices for estimating the amplitude of a given quantum state, which is a core subroutine in various computing tasks such as the Monte Carlo methods. One of those algorithms is based on the maximum likelihood estimate with parallelized quantum circuits. In this paper, we extend this method so that it incorporates the realistic noise effect, and then give an experimental demonstration on a superconducting IBM Quantum device. The maximum likelihood estimator is constructed based on the model assuming the depolarization noise. We then formulate the problem as a two-parameters estimation problem with respect to the target amplitude parameter and the noise parameter. In particular we show that there exist anomalous target values, where the Fisher information matrix becomes degenerate and consequently the estimation error cannot be improved even by increasing the number of amplitude amplifications. The experimental demonstration shows that the proposed maximum likelihood estimator achieves quantum speedup in the number of queries, though the estimation error saturates due to the noise. This saturated value of estimation error is consistent to the theory, which implies the validity of the depolarization noise model and thereby enables us to predict the basic requirement on the hardware components (particularly the gate error) in quantum computers to realize the quantum speedup in the amplitude estimation task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.