Improved and/or accelerated decision making is a crucial step during flutter certification processes. Unfortunately, most finite element structural dynamics models have uncertainties associated with model validity. Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. The model tuning process requires not only satisfactory correlations between analytical and experimental results, but also the retention of the mass and stiffness properties of the structures. Minimizing the difference between analytical and experimental results is a type of optimization problem. By utilizing the multidisciplinary design, analysis, and optimization (MDAO) tool in order to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes can be matched to the target data to retain the mass matrix orthogonality. This approach has been applied to minimize the model uncertainties for the structural dynamics model of the Aerostructures Test Wing (ATW), which was designed and tested at the National Aeronautics and Space Administration (
This paper describes a novel computational-fluid-dynamics-based numerical solution procedure for effective simulation of aerothermoacoustics problems with application to aerospace vehicles. A finite element idealization is employed for both fluid and structure domains, which fully accounts for thermal effects. The accuracies of both the fluid and structure capabilities are verified with flight-and ground-test data. A time integration of the structural equations of motion , with the governing flow equations, is conducted for the computation of the unsteady aerodynamic forces, which uses a transpiration boundary condition at the surface nodal points in lieu of the updating of the fluid mesh. Two example problems are presented herein to that effect. The first one relates to a cantilever wing with a NACA 0012 airfoil. The solution results demonstrate the effect of temperature loading that causes a significant increase in acoustic response. A second example, the hypersonic X-43 vehicle, is also analyzed; and relevant results are presented. The common finite element-based aerothermoelastic-acoustics simulation process, its applicability to the efficient and routine solution of complex practical problems, the employment of the effective transpiration boundary condition in the computational fluid dynamics solution, and the development and public domain distribution of an associated code are unique features of this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.