Although a myriad of bioorthogonal prodrugs have been developed, very few of them present both fast reaction kinetics and complete cleavage. Herein, we report a new bioorthogonal prodrug strategy with both fast reaction kinetics (k 2: ∼103 M–1 s–1) and complete cleavage (>90% within minutes) using the bioorthogonal reaction pair of N-oxide and boron reagent. Distinctively, an innovative 1,6-elimination-based self-immolative linker is masked by N-oxide, which can be bioorthogonally demasked by a boron reagent for the release of both amino and hydroxy-containing payload in live cells. Such a strategy was applied to prepare a bioorthogonal prodrug for a camptothecin derivative, SN-38, resulting in 10-fold weakened cytotoxicity against A549 cells, 300-fold enhanced water solubility, and “on-demand” activation upon a click reaction both in vitro and in vivo. This novel bioorthogonal prodrug strategy presents significant advances over the existing ones and may find wide applications in drug delivery in the future.
Sinomenine hydrochloride (SH) is an ideal drug for the treatment of rheumatoid arthritis and osteoarthritis. However, high plasma concentration of systemically administered SH can release histamine, which can cause rash and gastrointestinal side effects. Topical delivery can increase SH concentration in the synovial fluid without high plasma level, thus minimizing systemic side effects. However, passive diffusion of SH was found to be inefficient because of the presence of the stratum corneum layer. Therefore, an effective method is required to compensate for the low efficiency of SH passive diffusion. In this study, transdermal experiments in vitro and clinical tests were utilized to explore the optimized parameters for electroporation of topical delivery for SH. Fluorescence experiment and hematoxylin and eosin staining analysis were performed to reveal the mechanism by which electroporation promoted permeation. In vitro, optimized electroporation parameters were 3 KHz, exponential waveform, and intensity 10. Using these parameters, transdermal permeation of SH was increased by 1.9–10.1 fold in mice skin and by 1.6–47.1 fold in miniature pig skin compared with passive diffusion. After the electroporation stimulation, the intercellular intervals and epidermal cracks in the skin increased. In clinical tests, SH concentration in synovial fluid was 20.84 ng/mL after treatment with electroporation. Therefore, electroporation with optimized parameters could significantly enhance transdermal permeation of SH. The mechanism by which electroporation promoted permeation was that the electronic pulses made the skin structure looser. To summarize, electroporation may be an effective complementary method for transdermal permeation of SH. The controlled release of electroporation may be a promising clinical method for transdermal drug administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.