Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal types of cancer and the 5-year survival rate is only 5%. Several studies have suggested that cancer stem cells (CSCs) are thought to be involved in recurrence and metastasis and so it is essential to establish an approach targeting CSCs. Here we have demonstrated that cyclic guanosine monophosphate (cGMP) suppressed CD44 expression and the properties of CSCs in PDAC. Microarray analysis suggested that cGMP inhibited Forkhead box O3 (FOXO3), which is known as a tumor suppressor. Surprisingly, our data demonstrated that FOXO3 is essential for CD44 expression and the properties of CSCs. Our data also indicated that patients with high FOXO3 activation signatures had poor prognoses. This evidence suggested that cGMP induction and FOXO3 inhibition could be ideal candidates for pancreatic CSC.
In 95% of patients with pancreatic ductal adenocarcinoma, recurrence is observed following chemotherapy. Findings from several studies have indicated that cancer stem cells (CSCs) are resistant to anticancer agents and may be involved in cancer recurrence and metastasis. The CD44 protein is a major CSC marker, and CD44 also plays an indispensable role in the CSC properties in several cancers, including pancreatic cancer; however, no clinical approach exists to inhibit CD44 activity. Here, we have performed knock-in/knockdown experiments, and we demonstrate that the forkhead box O3 (FOXO3)/liver kinase B1 (LKB1)/AMP-activated protein kinase/peroxisome proliferator-activated receptor-γ co-activator-1β (PGC-1β)/pyruvate dehydrogenase-A1 pathway is essential for CD44 expression and CSC properties. We observed that patients exhibiting high pyruvate dehydrogenase-A1 expression have a poor prognosis. Systemic PGC-1β knock-out mice are fertile and viable and do not exhibit an overt phenotype under normal conditions. This suggests that cGMP induction and PGC-1β inhibition represent potential strategies for treating patients with pancreatic ductal adenocarcinoma.
Recurrence following chemotherapy is observed in the majority of patients with pancreatic ductal adenocarcinoma (PDAC). Recent studies suggest that cancer stem cells (CSCs) may be involved in PDAC recurrence and metastasis. However, an efficient approach to targeting pancreatic CSCs remains to be established. Here we show that in cancer cells overexpressing the 67-kDa laminin receptor (67LR)-dependent cyclic GMP (cGMP) inducer, epigallocatechin-3-O-gallate (EGCG) and a phosphodiesterase 3 (PDE3) inhibitor in combination significantly suppressed the Forkhead box O3 and CD44 axis, which is indispensable for the CSC properties of PDAC. We confirmed that the EGCG and PDE3 inhibitor in combination strongly suppressed tumour formation and liver metastasis in vivo. We also found that a synthesized EGCG analog capable of inducing strong cGMP production drastically suppressed the CSC properties of PDAC and extended the survival period in vivo. In conclusion, the combination treatment of EGCG and a PDE3 inhibitor as a strong cGMP inducer could be a potential treatment candidate for the eradication of CSCs of PDAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.