Myocardial protection and changes in gene expression follow whole body heat stress. Circumstantial evidence suggests that an inducible 70-kD heat shock protein (hsp70i), increased markedly by whole body heat stress, contributes to the protection. Transgenic mouse lines were constructed with a cytomegalovirus enhancer and j3-actin promoter driving rat hsp70i expression in heterozygote animals. Unstressed, transgene positive mice expressed higher levels of myocardial hsp70i than transgene negative mice after whole body heat stress. This high level of expression occurred without apparent detrimental effect. The hearts harvested from transgene positive mice and transgene negative littermates were Langendorff perfused and subjected to 20 min of warm (370C) zero-flow ischemia and up to 120 min of reflow while contractile recovery and creatine kinase efflux were measured. Myocardial infarction was demarcated by triphenyltetrazolium. In transgene positive compared with transgene negative hearts, the zone of infarction was reduced by 40%, contractile function at 30 min of reflow was doubled, and efflux of creatine kinase was reduced by 50%. Our findings suggest for the first time that increased myocardial hsp70i expression results in protection of the heart against ischemic injury and that the antiischemic properties of hsp70i have possible therapeutic relevance. (J. Clin. Invest.
Myocardial ischemia markedly increases the expression of several members of the stress/heat shock protein (HSP) family, especially the inducible HSP70 isoforms. Increased expression of HSP70 has been shown to exert a protective effect against a lethal heat shock. We have examined the possibility of using this resistance to a lethal heat shock as a protective effect against an ischemic-like stress in vitro using a rat embryonic heart-derived cell line H9c2(2-1). Myogenic cells in which the heat shock proteins have been induced by a previous heat shock are found to become resistant to a subsequent simulated ischemic stress. In addition, to address the question of how much does the presence of the HSP70 contribute to this protective effect, we have generated stably transfected cell lines overexpressing the human-inducible HSP70. Embryonal rat heartderived H9c2(2-1 ) cells were used for this purpose. This stably transfected cell line was found to be significantly more resistant to an ischemic-like stress than control myogenic cells only expressing the selectable marker (neomycin) or the parental cell line H9c2(2-1). This finding implicates the inducible HSP70 protein as playing a major role in protecting cardiac cells against ischemic injury. (J. Clin. Invest. 1994. 93:759-767.)
It has been postulated recently that the decrease in intracellular ATP content in cells under stress may be the trigger that leads to the induction of HSP70i by reducing the pool of free HSP70, thus activating the stress response. Our results indicate that although this may be the case during metabolic stress, another route of activation must be used during the early stages of hypoxia in cardiomyocytes. The induction of HSP70i also appears to precede the onset of cellular damage as measured by the release of cytoplasmic enzymes and preincorporated arachidonic acid. This indicates that cardiomyocytes are able to respond to hypoxia/reoxygenation and metabolic stress with increased HSP70i production and points to a potential protective role of heat shock proteins during ischemia/reperfusion injury.
Most of the members of the mammalian heat-shock protein (HSP) gene family have been studied and isolated from human and mouse cells. Few studies have concentrated on the HSPs of rat, a commonly used experimental animal. We have isolated and characterized a novel inducible rat HSP70 gene using an HSP70 cDNA sequence obtained from an ischaemic rat heart cDNA library. The isolated rat HSP70 gene was found to be a functional gene, as indicated by RNAase-protection and Northern-blot analysis. The deduced amino acid sequence of the inducible rat HSP70 exhibits a high degree of similarity to previously isolated mammalian inducible HSP70 gene products. Expression of the inducible HSP70 gene in rat myogenic cells (H9c2) is markedly increased after relatively short periods of hypoxia as well as by heat shock. Two heat-shock elements (HSE) are present in the rat HSP70 promoter. Transient transfection of rat HSP70 promoter/chloramphenicol acetyltransferase constructs into H9c2 cells shows that the presence of either of the two HSEs is sufficient for heat-shock inducibility. In contrast, induction of the rat HSP70/chloramphenicol acetyltransferase constructs by hypoxia is only detectable when both HSEs are present. This leads us to conclude that the induction of HSP70 by hypoxia and heat shock occurs through the same regulatory HSEs but the activation of the inducible HSP70 gene by heat shock is several-fold higher than by hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.