Citrus Huanglongbing (HLB) is one of the most destructive diseases of citrus plants caused by the obligate and phloem-limiting bacterium Candidatus Liberibacter asiaticus (Las). Reliable detection methods are important for successful control of the disease. This study was aimed to develop a rapid and user-friendly on-site detection system for Las using the TaqMan probe-based insulated isothermal polymerase chain reaction (iiPCR) assay. The Las-specific on-site detection system could be completed within one hour by simple DNA extraction coupled with a portable POCKIT device, which can perform PCR amplification and automatically provide qualitative results derived from fluorescence signals. The sensitivity of the TaqMan probe-iiPCR assay could be as low as single copy of Las, comparable to a real-time PCR method. Further testing of the field citrus samples showed 100% agreement between the TaqMan probe-iiPCR assay and the real-time PCR method, and the on-site detection system also demonstrated a great performance of Las detection. With high specificity and sensitivity, the on-site detection system developed in this study becomes a simple, rapid and powerful tool for detecting Las in fields.
Including pest resistance elements against the major local concern is naturally important in the breeding process. Oat (Avena sativa L.) has been recently reintroduced into Taiwan as a winter alternative forage crop, and its agronomic performance has been evaluated at different locations in the country. This study examined the resistance to root-knot nematode, Meloidogyne graminicola, in four oat (Avena sativa L.) breeding lines of mass planting potential for winter in Taiwan. The host attraction level to the nematode, and the penetration and reproduction ability of nematode towards host roots were evaluated by chemotaxis assay, root staining assay, root galling, and nematode extraction. Based on the gall index (GI) and multiplication factor (R), the resistance of each oat line was evaluated. At 24 h postinoculation, second-stage juvenile (J2) nematodes appeared most attracted by oat breeding lines UFRGS136104-3 and UFRGS136119-2. The number of J2s successfully penetrated into the two breeding lines were also high. However, at 40 days postinoculation, observation of the oats in the newly developed culture bag nematode-inoculation system revealed that the amount of root galls and 2nd generation nematodes were significantly higher in line LA08085BS-T2 than in other lines. In sum, oat breeding line UFRGS136104-3 was highly resistant to M. graminicola by inhibiting the gall formation and nematode reproduction, while UFRGS136106-3 and UFRGS136119-2 showed relatively weak resistance and oat line LA08085BS-T2 would be a moderately susceptible host to M. graminicola, with high numbers of root gall formation. The outcome of this study provides ground information for nematode-resistant oat cultivar breeding.
The citrus systemic diseases, including citrus Huanglongbing (caused by Candidatus Liberibacter asiaticus (CLas)), citrus tristeza (caused by citrus tristeza virus (CTV)), citrus tatter leaf (caused by citrus tatter leaf virus (CTLV)), and citrus exocortis (caused by citrus exocortis viroid (CEVd)), are threats to citrus production in Taiwan. Reliable diagnostic methods are important for the management of these systemic diseases. In this study, we developed a multiplex reverse transcription–polymerase chain reaction (RT-PCR) assay to detect four pathogens simultaneously. Herein, the specific amplicons from each pathogen (295 bp for CLas, 468 bp for CTV, 120 bp for CTLV, and 196 bp for CEVd) were successfully produced using the optimized multiplex RT-PCR described here. The sensitivity evaluation showed that low titers of pathogens could be detected using this multiplex RT-PCR. Compared with the published simplex assays, the detection of field samples using the multiplex RT-PCR developed in this study showed a better performance. The detections using multiplex RT-PCR revealed that these four citrus systemic pathogens were commonly found in fields, and 30.0% of field samples were mix-infected. To our knowledge, this is the first study of a survey of the four important citrus systemic diseases in Taiwan, and it provides insights for improving disease management. Therefore, the multiplex RT-PCR assay provides a useful method for routine disease surveying and the production of pathogen-free citrus plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.