For use in high-magnetic-field coil-based applications, the critical current density (Jc) of REBa2Cu3Oy (REBCO, where RE = rare earth) coated conductors must be isotropically improved, with respect to the direction of the magnetic field; these improvements must be realized at the operating conditions of these applications. In this study, improvement of the Jc for various applied directions of magnetic field was achieved by controlling the morphology of the BaHfO3 (BHO) nano-rods in a SmBCO film. We fabricated the 3.0 vol. % BHO-doped SmBCO film at a low growth temperature of 720 °C, by using a seed layer technique (Ts = 720 °C film). The low-temperature growth resulted in a morphological change in the BHO nano-rods. In fact, a high number density of (3.1 ± 0.1) × 103 μm−2 of small (diameter: 4 ± 1 nm), discontinuous nano-rods that grew in various directions, was obtained. In Jc measurements, the Jc of the Ts = 720 °C film in all directions of the applied magnetic field was higher than that of the non-doped SmBCO film. The Jcmin (6.4 MA/cm2) of the former was more than 6 times higher than that (1.0 MA/cm2) of the latter at 40 K, under 3 T. The aforementioned results indicated that the discontinuous BHO nano-rods, which occurred with a high number density, exerted a 3D-like flux pinning at the measurement conditions considered. Moreover, at 4.2 K and under 17 T, a flux pinning force density of 1.6 TN/m3 was realized; this value was comparable to the highest value recorded, to date.
BaHfO3(BHO)-doped SmBa2Cu3Oy (SmBCO) superconducting films were fabricated with a seed layer and low-temperature growth (LTG technique) via pulsed laser deposition. The LTG technique enables the fabrication of high-quality SmBCO films even at a low substrate temperature during the deposition, and also greatly increases the number density of BHO nano-rods. Transmission electron microscopy observations showed that the 5.6 vol% BHO-doped sample had a high number density [(4.8 ± 0.3) × 103 μm−2] of small (5.4 ± 0.7 nm) BHO nano-rods. This sample exhibits maximum flux pinning forces (Fp) of 405 GN m−3 in 9.0 T at 40 K and 105 GN m−3 in 9.0 T at 65 K. The high density and small size of the nano-rods in a REBa2Cu3Oy matrix (where RE is a rare earth element) is considered to be very effective for enhancing Fp at low temperatures under a high field.
In order to apply REBa2Cu3Oy (REBCO, RE = rare earth elements or Y) coated conductors in high magnetic field, coil-based applications, the isotropic improvement of their critical current performance with respect to the directions of the magnetic field under these operating conditions is required. Most applications operate at temperatures lower than 50 K and magnetic fields over 2 T. In this study, the improvement of critical current density (Jc) performance for various applied magnetic field directions was achieved by controlling the nanostructure of the BaHfO3 (BHO)-doped SmBa2Cu3Oy (SmBCO) films on metallic substrates. The corresponding minimum Jc value of the films at 40 K under an applied 3 T field was 5.2 MA cm−2, which is over ten times higher than that of a fully optimized Nb–Ti wire at 4.2 K. At 4.2 K, under a 17.5 T field, a flux pinning force density of 1.4 TN m−3 for B//c was realized; this value is among the highest values reported for REBCO films to date. More importantly, the Fp for B//c corresponds to the minimum value for various applied magnetic field directions. We investigated the dominant flux pinning centers of films at 4.2 K using the anisotropic scaling approach based on the effective mass model. The dominant flux pinning centers are random pinning centers at 4.2 K, i.e., a high pinning performance was achieved by the high number density of random pins in the matrix of the BHO-doped SmBCO films.
We have fabricated 5.6 vol.% BaHfO 3 (BHO)-doped SmBa 2 Cu 3 O y (SmBCO) films at a low substrate temperature of 750 °C by using the low temperature growth (LTG) technique with a seed layer. Using the LTG technique, we can obtain a purely c-axis oriented SmBCO film even at low growth temperatures. The LTG technique also greatly increases the number density of BHO nanorods. The size and matching field of the BHO nanorods in the films were 5.4 nm and 9.9 T. Transport measurements were carried out, and a high irreversibility field (B irr ) and strong flux pinning force density (F p ) were obtained. The B irr was 15.1 T at 77 K for B//c. The maximum F p of 407 GN m −3 in 10 T at 40 K and 770 GN m −3 from 9 to 17 T at 20 K have been measured. We believe that the LTG technique can be considered as important for improving of flux pinning performance in BaMO 3 (BMO: M=Zr, Sn and Hf)-doped SmBCO coated conductors.
This paper reviews the progress of studies to determine optimum shapes of the artificial pinning center (APC) of REBa2Cu3Oy thin films and coated conductors towards superconducting magnets operating at temperatures of 77 K or less. Superconducting properties vary depending on the kind and quantity of BaMO3 materials. Therefore, we study changes in the shapes of nanorods that are due to the difference in the quality of additives and growth temperature. In addition, we aim to control the APC using an optimum shape that matches the operating temperature. In particular, we describe the shape control of nanorods in SmBCO thin films and coated conductors by employing lower temperature growth (LTG) technology using seed layers. From the cross-sectional transmission electron microscopy observations, we confirmed that using the LTG method, the BaHfO3 (BHO) nanorods, which were comparatively thin and short in length, formed a firework structure in the case of SmBCO films with coated conductors. The superconducting properties in the magnetic field of the SmBCO-coated conductor with the optimum amount of BHO showed that
= 1.6 TN m−3 on a single crystalline substrate and 1.5 TN m−3 on metallic substrate with a biaxially textured MgO layer fabricated by ion-beam assisted deposition method tape 4.2 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.