The purpose of this study is to analyze the role of diabatic heating in tropical cyclone ring structure evolution. A full-physics three-dimensional modeling framework is used to compare the results with two-dimensional modeling approaches and to point to limitations of the barotropic instability theory in predicting the storm vorticity structure configuration. A potential vorticity budget analysis reveals that diabatic heating is a leading-order term and that it is largely offset by potential vorticity advection. Sawyer–Eliassen integrations are used to diagnose the secondary circulation (and corresponding vorticity tendency) forced by prescribed heating. These integrations suggest that diabatic heating forces a secondary circulation (and associated vorticity tendency) that helps maintain the original ring structure in a feedback process. Sensitivity experiments of the Sawyer–Eliassen model reveal that the magnitude of the vorticity tendency is proportional to that of the prescribed heating, indicating that diabatic heating plays a critical role in adjusting and maintaining the eyewall ring.
This study examines how the structure and amount of cloud water content are associated with tropical cyclone (TC) intensity change using the CloudSat Tropical Cyclone (CSTC) dataset. Theoretical and modeling studies have demonstrated the importance of both the magnitude and vertical structure of latent heating in regulating TC intensity. However, the direct observations of the latent heat release and its vertical profile are scarce. The CSTC dataset provides the opportunity to infer the vertical profile of the latent heating from CloudSat retrievals of cloud ice water content (IWC) and liquid water content (LWC). It is found that strengthening storms have ~20% higher IWC than weakening storms, especially in the midtroposphere near the eyewall. These differences in IWC exist up to 24 h prior to an intensity change and are observed for all storm categories except major TCs. A similar analysis of satellite-observed rainfall rates indicates that strengthening storms have slightly higher rainfall rates 6 h prior to intensification. However, the rainfall signal is less robust than what is observed for IWC, and disappears for lead times greater than 6 h. Such precursors of TC intensity change provide observationally based metrics that may be useful in constraining model simulations of TC genesis and intensification.
While the transfer of moist enthalpy from the ocean to the atmosphere is the fundamental energy source for tropical cyclones, the release of latent heat in moist convection is the mechanism by which this energy is converted into the kinetic and potential energy of these storms. Most observational estimates of this heat release rely on satellite estimates of rain rate. Here, examination of five high-resolution numerical simulations of tropical cyclones reveals that there is a close correlation between the total condensate and the total heating, even though the former quantity is an amount and the latter is a rate. This relationship is due to the fact that for condensate to be sustained at large values, it must be rapidly replaced by new condensate and associated latent heating. Total condensate and total rain rate within fixed radial distances such as 111 km also show good correlations with the current intensity of the storm, but surprisingly, high values of condensate at high altitudes and close to the storm center are not good predictors of imminent intensification. These relationships are confirmed with an additional ensemble of 270 idealized simulations of tropical cyclones with varying sizes and intensities. Finally, simulated measurements of total condensate are computed from narrow swaths modeled after the cloud profiling radar on the CloudSat satellite. Despite their narrow footprint and the fact that they rarely cut through the exact center of the cyclone, these estimates of total condensate also show a useful correlation with current intensity.
This study examines the role of cloud-radiative interactions in the development of tropical cyclones using satellite measurements and model simulations. Previous modeling studies have found that the enhanced cloud radiative heating from longwave radiation in the convective region plays a key role in promoting the development of tropical convective systems. Here, we use satellite measurements and Weather Research and Forecasting Model (WRF) simulations to further investigate how critical cloud radiative interactions are to the development of tropical cyclones (TCs). Clouds and the Earth's Radiant Energy System measurements show that intensifying TCs have greater radiative heating from clouds within the TC area than weakening ones. Based on this result, idealized WRF simulations are performed to examine the importance of the enhanced radiative heating to TC intensification. Sensitivity experiments demonstrate that removing cloud-radiative interactions often inhibits tropical cyclogenesis, suggesting that cloud-radiative interactions play a critical role. Plain Language Summary It is difficult to accurately predict tropical cyclone (TC)formation. To better understand TC formation, we analyzed the relationship between energy from infrared radiation and TC formation through satellite observations and computer simulations. It was found that TCs with a greater amount of radiative heating from clouds are more likely to intensify over the next few days. Moreover, the probability of TC formation will decrease if the interaction between clouds and radiative heating is blocked. This result suggests that understanding how radiative heating strengthens TCs may improve the performance of hurricane forecasting. WU ET AL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.