Optically transparent polymer films with excellent thermal and ultraviolet (UV) resistance have been highly desired in advanced optoelectronic fields, such as flexible substrates for photovoltaic devices. Colorless and transparent polyimide (CPI) films simultaneously possess the good thermal stability and optical transparency. However, conventional CPI films usually suffered from the UV exposure and have to face the deterioration of optical properties during the long-term service in UV environments. In the current work, the commercially available hindered amine light stabilizers (HALS) were tried to be incorporated into the semi-alicyclic CPI matrix with the aim of enhancing the UV exposure stability. For this target, a CPI-0 film was first prepared from hydrogenated pyromellitic dianhydride (HPMDA) and 2,2′-dimethylbenzidine (DMBZ) via a one-step polycondensation procedure. Then, the commercially available HALS were incorporated into the CPI-0 (HPMDA-DMBZ) film matrix to afford four series of CPI/HALS composite films. Experimental results indicated that the Tinuvin® 791 HALS showed the best miscibility with the CPI-0 film matrix and the derived CPI-D series of composite films exhibited the best optical transmittances. The CPI-D nanocomposite films showed apparently enhanced UV exposure stability via incorporation of the 791 additives. For the pristine CPI-0 film, after the UV exposure for 6 h, the optical properties, including the transmittance at the wavelength of 350 nm (T350), lightness (L*), yellow indices (b*), and haze obviously deteriorated with the T350 values from 55.7% to 17.5%, the L* values from 95.12 to 91.38, the b* values from 3.38 to 21.95, and the haze values from 1.46% to 9.33%. However, for the CPI-D-10 film (791: CPI-0 = 1.0 wt%, weight percent), the optical parameters were highly maintained with the T350 values from 61.4% to 53.8%, the L* values from 95.46 to 95.36, the b* values from 1.84 to 1.51, and the haze values from 0.69% to 3.34% under the same UV aging conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.