In this paper, we present a novel Genetic Fuzzy Markup Language (GFML)-based genetic fuzzy system, including the genetic learning base, the knowledge base and rule base of FML, the fuzzy inference engine, and the genetic learning mechanism. The GFML is applied to the genetic fuzzy system for dealing with the knowledge base, the rule base, and the genetic learning base of the healthy diet domain, including the ingredients and the contained servings of six food categories of some common food in Taiwan. Moreover, the proposed novel system is able to infer the healthy status of human's daily eating. In the proposed system, the domain experts first define the nutrient facts of the common food to construct the fuzzy food ontology. Meanwhile, the involved Taiwanese students of National University of Tainan (NUTN) record their daily meals for a constant period of time. Then, based on the built fuzzy profile ontology, fuzzy food ontology, and fuzzy personal food ontology, a GFML-based genetic fuzzy system is carried out to infer the possibility of dietary healthy level for one-day meals. The experimental results show that the proposed GFML-based genetic fuzzy system gives good results for the healthy diet assessment.
Many different real-world applications with a highlevel of uncertainty proved the good performance of the type-2 fuzzy sets (T2 FSs). Balanced diet means that the intake of each necessary nutrient meets its adequate demand and actual caloric intake balances with calories burned. Additionally, making a diversity of choice from various types of food is also essential to reduce the risk of developing various chronic diseases. Different people have a different goal and it is hard to measure how healthy the eaten meal is for those who are not the domain experts on the diet. This paper presents an adaptive personalized diet linguistic recommendation mechanism based on type-2 fuzzy logic system (T2 FLS) and genetic fuzzy markup language (GFML). First, an adaptive dietary assessment and recommendation ontology is constructed by domain experts, and then a T2 FS-based GFML, describing the fuzzy knowledge base and the fuzzy rule base of the proposed mechanism, is evolved by using genetic algorithms. Next, a T2 FS-based fuzzy inference mechanism infers the result of the dietary health level based on the evolved type-2 GFML (T2GFML). In addition, the balanced computation mechanism is also proposed to reduce the computational complexity of the T2 FLS for the diet domain knowledge. Finally, the linguistic knowledge discovery mechanism presents the discovered linguistic meaning about the meal's health level to show the involved subjects how to make a personalized diet linguistic recommendation. This type of information about the eaten meal can provide the subjects with a reference to gradually improve their unhealthy eating habit and then become healthier and healthier. Experimental results show that the results of the proposed mechanism for the T2 FLS are better than those for the type-1 fuzzy logic system (T1 FLS).Index Terms-Adaptive ontology, genetic fuzzy markup language (GFML), genetic learning, personalized diet linguistic recommendation, Type-2 fuzzy set. 1063-6706
This paper presents a Fuzzy Markup Language (FML)-based Japanese diet assessment system and applies it to Japanese diet. Food Exchange List (FEL), published by Japan Diabetes Society, is adopted as a standard to assess one person's diet healthy level to help him/her eat a wide variety of foods and drinks to balance the eaten food items and physical activity. FML is used to describe the knowledge base and rule base of the diet domain. The dietician first defines the nutrient facts of the collected food from food guidebook and Internet. Then, the involved subject records his/her personal information and daily meals for a constant period. Based on the predefined Japanese food ontology, including ingredients of each food item and the contained units of each food group, the proposed fuzzy inference mechanism is implemented to infer the possibility of dietary healthy level for one-day meal. From the simulation results, the proposed approach is feasible to apply to Japanese diet assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.