Existing traffic flow prediction methods generally only consider the spatiotemporal characteristics of traffic flow. However, in addition to the spatiotemporal characteristics, the interference of various external factors needs to be considered in traffic flow prediction, including severe weather, major events, traffic control, and metro failures. The current research still cannot fully use the information contained in these external factors. To address this issue, we propose a novel metro traffic flow prediction method (KGR-STGNN) based on knowledge graph representation learning. We construct a knowledge graph that stores factors related to metro traffic networks. Through the knowledge graph representation learning technology, we can learn the influence representation of external factors from the traffic knowledge graph, which can better incorporate the influence of external factors into the prediction model based on the spatiotemporal graph neural network. Experimental results demonstrate the effectiveness of our proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.