Cancer vaccine, which can promote tumor-specific immunostimulation, is one of the most important immunotherapeutic strategies and holds tremendous potential for cancer treatment/prevention. Here, we prepare a series of nanoparticles composed of doxorubicin- and tyrosine kinase inhibitor-loaded and hyaluronic acid-coated dendritic polymers (termed HDDT nanoparticles) and find that the HDDT nanoparticles can convert various cancer cells to micrometer-sized vesicles (1.6−3.2 μm; termed HMVs) with ~100% cell-to-HMV conversion efficiency. We confirm in two tumor-bearing mouse models that the nanoparticles can restrain tumor growth, induce robust immunogenic cell death, and convert the primary tumor into an antigen depot by producing HMVs in situ to serve as personalized vaccines for cancer immunotherapy. Furthermore, the HDDT-healed mice show a strong immune memory effect and the HDDT treatment can realize long-term protection against tumor rechallenge. Collectively, the present work provides a general strategy for the preparation of tumor-associated antigen-containing vesicles and the development of personalized cancer vaccines.
Shun-Yu Wu received her B.S. degree from Southeast University in 2019. She is currently a Master Student under the guidance of Prof. Fu-Gen Wu at the School of Biological Science and Medical Engineering, Southeast University. Her research focuses on the development of nanomaterials for cancer photothermal therapy, chemotherapy, immunotherapy, etc.
As a naturally occurring cytolytic peptide, melittin (Mel) has strong cytolytic activity and is a potent therapeutic peptide for cancer therapy. However, the serious hemolytic activity of Mel largely impedes its clinical applications. In this work, based on the strong interactions between proteins/peptides and polyphenols, we develop a tannic acid–Fe 3+ metal–phenolic network (MPN)-based strategy that can convert Mel from foe to friend via shielding its positive charges and reducing its hemolytic activity. Besides, an immune adjuvant resiquimod (R848) is also introduced for immunostimulation, affording the final Mel- and R848-coloaded nanodrug. The Mel-caused membrane disruption can induce immunogenic cell death for immunostimulation, R848 can act as an immune adjuvant to further facilitate the immunostimulatory effect, and the tannic acid–Fe 3+ MPN-mediated Fenton reaction can produce reactive oxygen species for cancer treatment. Further experiments reveal that the nanodrug can effectively cause immunogenic cell death of tumor cells and arouse robust intratumoral and systemic antitumor immunostimulation. In the bilateral tumor-bearing mouse models, the nanodrug considerably destroys the primary tumor and also boosts the abscopal effect to ablate the distant tumor. Collectively, the MPN-facilitated “foe-to-friend” strategy may promote the practical applications of Mel and foster the development of cancer immunotherapeutics.
Rapid and accurate differentiation between live and dead cells is highly desirable for the evaluation of cell viability. Here, we report the application of the orange-emitting sulfur-doped organosilica nanodots (S-OSiNDs) for ultrafast (30 s), ultrasensitive (1 μg/mL), and universal staining of the dead bacterial, fungal, and mammalian cells but not the live ones, which satisfies the requirements of a fluorescent probe that can specifically stain the dead cells. We further verify that the fluorescence distribution range of S-OSiNDs (which are distributed in cytoplasm and nucleus) is much larger than that of the commercial dead/fixed cell/tissue staining dye RedDot2 (which is distributed in the nucleus) in terms of dead mammalian cell staining, indicating that S-OSiNDs possess a better staining effect of dead cells than RedDot2. Overall, S-OSiNDs can be used as a robust fluorescent probe for ultrafast and accurate discrimination between dead and live cells at a single cell level, which may find a variety of applications in the biomedical field.
Chimeric antigen receptor (CAR)-T cell therapy is a promising form of cancer immunotherapy that genetically modifies a patient's own T cells to express CARs for the specific recognition and eradication of cancer cells.Unfortunately, unlike the impressive advancements it achieves in hematologic cancer treatment, CAR-T cell therapy has encountered obstacles in treating solid tumors such as high cost, inadequate tumor infiltration, and immunosuppressive tumor microenvironment. Recently, the regional administration of CAR-T cells via hydrogel platforms has been investigated as a potential method to not only promote tumor infiltration, cell expansion, and anticancer efficacy of the CAR-T cells but also provide a multifunctional platform to introduce additional therapeutic agents for achieving potentiated cancer therapy. In this perspective, different design strategies of CAR-T cell delivery hydrogels are introduced. Besides, various types of therapeutic agents incorporated in the hydrogel platforms and diverse hydrogel formulations have been discussed. The current challenges and future research directions on CAR-T cell delivery hydrogels are also proposed. It is hoped that this perspective can help future researchers develop new CAR-T cell delivery hydrogels that can effectively fight against solid tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.