Viscosity is a fundamental biomechanical parameter related to the function and pathological status of cells and tissues. Viscosity sensing is of vital importance in early biomedical diagnosis and health monitoring. To date, there have been few methods of miniature viscosity sensing with high safety, flexible controllability, and excellent biocompatibility. Here, an indirect optical method combining the significant advantages of both optical tweezers and microflows has been presented in this paper to construct a cellular micromotor−based viscosity sensor. Optical tweezers are used to drive a yeast cell or biocompatible SiO2 particle to rotate along a circular orbit and thus generate a microvortex. Another target yeast cell in the vortex center can be controllably rotated under the action of viscous stress to form a cellular micromotor. As the ambient viscosity increases, the rotation rate of the micromotor is reduced, and thus viscosity sensing is realized by measuring the relationship between the two parameters. The proposed synthetic material-free and fuel-free method is safer, more flexible, and biocompatible, which makes the cellular micromotor-based viscosity sensor a potential detector of the function and pathological status of cells and tissues in vivo without introducing any exogenous cells.
Highly sensitive detection of refractive index (RI) is essential for the analysis of the bio-microenvironment and basic cellular reactions. To achieve this, optic-fiber RI sensors based on localized surface plasmon resonance (LSPR) have been widely used for their flexibility and high sensitivity. However, the current optic-fiber RI sensors are mainly fabricated using glass, which makes them face the challenges in biocompatibility and biosafety. In this work, a RI sensor with high sensitivity is fabricated using metal-nanostructure-decorated spider silk. The spider silk, which is directly dragged from Araneus ventricosus, is natural protein-based biopolymer with low attenuation, good biocompatibility and biodegradability, large RI, great flexibility, and easy functionalization. Hence, the spider silk can be an ideal alternative to glass for sensing in biological environments with a wide RI range. Different kinds of metal nanostructures, such as gold nanorods (GNRs), gold nanobipyramids (GNBP), and Ag@GNRs, are decorated on the surface of the spider silk utilizing the surface viscidity of the silk. By directing a beam of white light into the spider silk, the LSPR of the metal nanostructures was excited and a highly sensitive RI sensing (the highest sensitivity of 1746 nm per refractive index was achieved on the GNBP-decorated spider silk) was obtained. This work may pave a new way to precise and sensitive biosensing and bioanalysis.
Optical trapping, transportation, coalescence and splitting of femto-/pico-liter microdroplets are realized based on a scanning optical tweezing system. On this basis, the microdroplets are used as microreactors to conduct the microreactions.
Controllably accumulating and delivering nanoparticles (NPs) into specific locations are a central theme of nano-engineering and important for targeted therapy or bacteria removal. Here we present a technique allowing bidirectional accumulation, directional delivery and release of nanoparticles through two 980-nm-wavelength counter-propagating evanescent waves in an optical nanofiber (NF). Using 713-nm-diameter polystyrene NPs suspension and an 890-nm-diameter NF as an example, we experimentally and theoretically demonstrate that the NPs delivered along the NF surface in opposite directions are accumulated into the region where the scattering loss of the NPs is maximum, and about 90% of the incident optical field from both ends of the NF can be coupled into the region. Moreover, the accumulation region can be controlled by altering the incident optical power ratio of the two counter-propagating laser beams, while the accumulated NPs can be delivered and then released into the specific locations by turning off the two lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.