Thermally-induced tensile strain that remains in perovskite films following annealing results in increased ion migration and is a known factor in the instability of these materials. Previously-reported strain regulation methods for perovskite solar cells (PSCs) have utilized substrates with high thermal expansion coefficients that limits the processing temperature of perovskites and compromises power conversion efficiency. Here we compensate residual tensile strain by introducing an external compressive strain from the hole-transport layer. By using a hole-transport layer with high thermal expansion coefficient, we compensate the tensile strain in PSCs by elevating the processing temperature of hole-transport layer. We find that compressive strain increases the activation energy for ion migration, improving the stability of perovskite films. We achieve an efficiency of 16.4% for compressively-strained PSCs; and these retain 96% of their initial efficiencies after heating at 85°C for 1000 hoursthe most stable wide-bandgap perovskites (above 1.75 eV) reported so far.
In-plane anisotropic layered materials such as black phosphorus (BP) have emerged as an important class of two-dimensional (2D) materials that bring a new dimension to the properties of 2D materials, hence providing a wide range of opportunities for developing conceptually new device applications. However, all of recently reported anisotropic 2D materials are relatively narrow-bandgap semiconductors (<2 eV), and there has been no report about this type of materials with wide bandgap, restricting the relevant applications such as polarization-sensitive photodetection in short wave region. Here we present a new member of the family, germanium diselenide (GeSe) with a wide bandgap of 2.74 eV, and systematically investigate the in-plane anisotropic structural, vibrational, electrical, and optical properties from theory to experiment. Photodetectors based on GeSe exhibit a highly polarization-sensitive photoresponse in short wave region due to the optical absorption anisotropy induced by in-plane anisotropy in crystal structure. Furthermore, exfoliated GeSe flakes show an outstanding stability in ambient air which originates from the high activation energy of oxygen chemisorption on GeSe (2.12 eV) through our theoretical calculations, about three times higher than that of BP (0.71 eV). Such unique in-plane anisotropy and wide bandgap, together with high air stability, make GeSe a promising candidate for future 2D optoelectronic applications in short wave region.
GeSe has recently emerged as a promising photovoltaic absorber material due to its attractive optical and electrical properties as well as earth-abundant and low-toxic constituent elements. However, no photovoltaic device has been reported based on this material so far, which could be attributed to the inevitable coexistence of phase impurities Ge and GeSe, leading to detrimental recombination-center defects and seriously degrading the device performance. Here we overcome this issue by introducing a simple and fast (4.8 μm min) rapid thermal sublimation (RTS) process designed according to the sublimation feature of the layered structured GeSe. This new method offers a compelling combination of assisting raw material purification to suppress deleterious phase impurities and preventing the formation of detrimental point defects through congruent sublimation of GeSe, thus providing an in situ self-regulated process to fabricate high quality polycrystalline GeSe films. Solar cells fabricated following this process show a power conversion efficiency of 1.48% with good stability. This preliminary efficiency and high stability, combined with the self-regulated RTS process (also extended to the fabrication of other binary IV-VI chalcogenide films, i.e., GeS), demonstrates the great potential of GeSe for thin-film photovoltaic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.