Automated Driving Systems (ADS) have made great achievements in recent years thanks to the efforts from both academia and industry. A typical ADS is composed of multiple modules, including sensing, perception, planning and control, which brings together the latest advances in multiple domains. Despite these achievements, safety assurance of the systems is still of great significance, since the unsafe behavior of ADS can bring catastrophic consequences and unacceptable economic and social losses. Testing is an important approach to system validation for the deployment in practice; in the context of ADS, it is extremely challenging, due to the system complexity and multidisciplinarity. There has been a great deal of literature that focuses on the testing of ADS, and a number of surveys have also emerged to summarize the technical advances. However, most of these surveys focus on the system-level testing that is performed within software simulators, and thereby ignore the distinct features of individual modules. In this paper, we provide a comprehensive survey on the existing ADS testing literature, which takes into account both module-level and system-level testing. Specifically, we make the following contributions: (1) we build a threat model that reveals the potential safety threats for each module of an ADS; (2) we survey the module-level testing techniques for ADS and highlight the technical differences affected by the properties of the modules; (3) we also survey the system-level testing techniques, but we focus on empirical studies that take a bird's-eye view on the system, the problems due to the collaborations between modules, and the gaps between ADS testing in simulators and real world; (4) we identify the challenges and opportunities in ADS testing, which facilitates the future research in this field. CCS Concepts: • Computer systems organization → Embedded systems; • Software and its engineering → Software verification and validation; • Security and privacy → Systems security; • Computing methodologies → Artificial intelligence.
Automated Driving Systems ( ADS ) have made great achievements in recent years thanks to the efforts from both academia and industry. A typical ADS is composed of multiple modules, including sensing, perception, planning, and control, which brings together the latest advances in different domains. Despite these achievements, safety assurance of ADS is of great significance, since unsafe behavior of ADS can bring catastrophic consequences. Testing has been recognized as an important system validation approach that aims to expose unsafe system behavior; however, in the context of ADS, it is extremely challenging to devise effective testing techniques, due to the high complexity and multidisciplinarity of the systems. There has been great much literature that focuses on the testing of ADS, and a number of surveys have also emerged to summarize the technical advances. Most of the surveys focus on the system-level testing performed within software simulators, and they thereby ignore the distinct features of different modules. In this paper, we provide a comprehensive survey on the existing ADS testing literature, which takes into account both module-level and system-level testing. Specifically, we make the following contributions: (1) we survey the module-level testing techniques for ADS and highlight the technical differences affected by the features of different modules; (2) we also survey the system-level testing techniques, with focuses on the empirical studies that summarize the issues occurring in system development or deployment, the problems due to the collaborations between different modules, and the gap between ADS testing in simulators and the real world; (3) we identify the challenges and opportunities in ADS testing, which pave the path to the future research in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.