The electron-transport properties of various substituted molecules based on the thiol-ended thiophene dimer (2Th1DT) are investigated through density functional theory (DFT) combined with nonequilibrium Green's function (NEGF) method. The current-voltage (I-V) curves of all the Au/2Th1DT/Au systems in this work display similar steplike features, while their equilibrium conductances show a large difference and some of these I-V curves are asymmetric distinctly. The results reveal the dependence of conductance on the energy level of the substituted 2Th1DT molecules. Rectification ratios are computed to examine the asymmetric properties of the I-V curves. The rectifying behavior in the 2Th1DT molecule containing the amino group close to the molecular end is more prominent than that in the other molecules. The rectifying behavior is analyzed through transmission spectra and molecular projected self-consistent Hamiltonian (MPSH) states. Slight negative differential resistance (NDR) can be observed in some of the systems. The electron-transport properties of 2Th1DT molecules containing different heteroatoms are also investigated. The results indicate that the current in heteroatom-containing molecules is larger than that in their pristine analogues, and lighter heteroatoms are more favorable than heavier heteroatoms for electron transport of the thiophene dimer.
Using density functional theory (DFT) combined with the first-principles nonequilibrium Green's function (NEGF), we investigated the electron-transport properties and rectifying behaviors of several molecular junctions based on the bis-2-(5-ethynylthienyl)ethyne (BETE) molecule. To examine the roles of different rectification factors, asymmetric electrode-molecule contacts and donor-acceptor substituent groups were introduced into the BETE-based molecular junction. The asymmetric current-voltage characteristics were obtained for the molecular junctions containing asymmetric contacts and donor-acceptor groups. In our models, the computed rectification ratios show that the mode of electrode-molecule contacts plays a crucial role in rectification and that the rectifying effect is not enhanced significantly by introducing the additional donor-acceptor components for the molecular rectifier with asymmetric electrode-molecule contacts. The current-voltage characteristics and rectifying behaviors are discussed in terms of transmission spectra, molecular projected self-consistent Hamiltonian (MPSH) states, and energy levels of MPSH states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.