Chemotherapy is ineffective for treating malignant glioma (MG) because of the low therapeutic levels of pharmaceuticals in tumour tissues and the well-known tumour resistance. The resistance to alkylators is modulated by the DNA repair protein O-alkylguanine-DNA alkyltransferase (AGT). O-benzylguanine (O-BG) can irreversibly inactivate AGT by competing with O-methylguanine and has been confirmed to increase the therapeutic activity of alkylators. We developed hybrid-structured poly[(d,l)-lactide-co-glycolide] nanofibrous membranes (HSNMs) that enable the sequential and sustained release of O-BG and two alkylators (carmustine and temozolomide [TMZ]). HSNMs were surgically instilled into the cerebral cavity of pathogen-free rats and F98 glioma-bearing rats. The release behaviours of loaded drugs were quantified by using high-performance liquid chromatography. The treatment results were compared with the rats treated with intraperitoneal injection of O-BG combined with surgical implantation of carmustine wafer and oral TMZ. The HSNMs revealed a sequential drug release behaviour with the elution of high drug concentrations of O-BG in the early phase, followed by high levels of two alkylators. All drug concentrations remained high for over 14 weeks. Tumour growth was slower and the mean survival time was significantly prolonged in the HSNM-treated group. Biodegradable HSNMs can enhance therapeutic efficacy and prevent toxic systemic effects.
DNA repair promotes the progression and recurrence of glioblastoma (GBM). However, there remain no effective therapies for targeting the DNA damage response and repair (DDR) pathway in the clinical setting. Thus, we aimed to conduct a comprehensive analysis of DDR genes in GBM specimens to understand the molecular mechanisms underlying treatment resistance. Herein, transcriptomic analysis of 177 well-defined DDR genes was performed with normal and GBM specimens (n = 137) from The Cancer Genome Atlas and further integrated with the expression profiling of histone deacetylase 6 (HDAC6) inhibition in temozolomide (TMZ)-resistant GBM cells and patient-derived tumor cells. The effects of HDAC6 inhibition on DDR signaling were examined both in vitro and intracranial mouse models. We found that the expression of DDR genes, involved in repair pathways for DNA double-strand breaks, was upregulated in highly malignant primary and recurrent brain tumors, and their expression was related to abnormal clinical features. However, a potent HDAC6 inhibitor, MPT0B291, attenuated the expression of these genes, including RAD51 and CHEK1, and was more effective in blocking homologous recombination repair in GBM cells. Interestingly, it resulted in lower cytotoxicity in primary glial cells than other HDAC6 inhibitors. MPT0B291 reduced the growth of both TMZ-sensitive and TMZ-resistant tumor cells and prolonged survival in mouse models of GBM. We verified that HDAC6 regulated DDR genes by affecting Sp1 expression, which abolished MPT0B291-induced DNA damage. Our findings uncover a regulatory network among HDAC6, Sp1, and DDR genes for drug resistance and survival of GBM cells. Furthermore, MPT0B291 may serve as a potential lead compound for GBM therapy.
Radiosurgery serves an important function in the treatment of patients with intraocular tumors and preserves visual function via organ conservation. Therefore, it is important to ensure the safety and precision of GK-SRS as a primary treatment for intraocular tumors. The present case study described a 57-year-old female with uveal melanoma treated with GK-SRS. Retrobulbar anesthesia following fixation of the treated eye, via the suture of two of the extraocular muscles to the stereotactic frame, was performed to immobilize the eye during treatment. Computed tomography (CT) scans were performed following eye fixation, immediately prior to and following GK-SRS, to validate the accuracy of the tumor localization. The eye movement analysis revealed that the gravity center point deviations of the tumor and lens during treatment were <0.110 mm. At least 95% of the tumor volume was covered by the prescription dose according to three sets of CT images. The patient underwent a trans pars plana vitrectomy owing to a right eye vitreous hemorrhage. A 37-month follow-up assessment revealed tumor shrinkage, and the disappearance of the serous retinal detachments was noted on the basis of ophthalmoscopy and orbital magnetic resonance imaging. No major complications developed during the follow-up period. Using our treatment protocol, GK-SRS is a non-invasive procedure which is used as a brief single fraction treatment for intraocular tumor. The eye fixation method used in the present study has high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.