Water-soluble mercaptoacetic acid-coated 3.1 nm CdS quantum dots (QDs) with two concentrations were selected for studying the correlation between the photoluminescence and the crystal growth mechanism. By achieving the classic Ostwald ripening mechanism and oriented attachment (OA) growth mechanism, we have shown that the evolution of the emission spectra were obviously different. The change in both the surface and internal defects during OA crystal growth were responsible for the specific variation of the photoluminescence of CdS QDs. Strategies for obtaining QDs with different luminescent properties are suggested.
A novel sulfonate-carboxylate ligand of biphenyl-3,3'-disulfonyl-4,4'-dicarboxylic acid (H4-BPDSDC) and its lanthanide-organic frameworks {[LnK(BPDSDC)(DMF)(H2O)]·x(solvent)}n (JXNU-2, where JXNU denotes Jiangxi Normal University, DMF indicates dimethylformamide, and Ln = Sm(3+), Eu(3+), and Pr(3+)) were synthesized and structurally characterized. The three isomorphous lanthanide compounds feature three-dimensional frameworks constructed from one-dimensional (1D) rod-shaped heterometallic Ln-K secondary building units and are an illustration of a Kagome-like lattice with large 1D hexagonal channels and small 1D trigonal channels. The porous material of the representive JXNU-2(Sm) has an affinity to quadrupolar molecules such as CO2 and C2H2. In addition, the JXNU-2(Sm) compound exhibits humidity- and temperature-dependent proton conductivity with a large value of 1.11 × 10(-3) S cm(-1) at 80 °C and 98% relative humidity. The hydrophilic sulfonate group on the surface of channels facilitates enrichment of the solvate water molecules in the channels, which enhances the proton conductivity of this material. Moreover, the JXNU-2(Eu) material with the characteristic bright red color shows the potential for recognition of K(+) and Fe(3+) ions. The enhancing Eu(3+) luminescence with the K(+) ion and quenching Eu(3+) luminescence with the Fe(3+) ion can be associated with the functional groups of the organic ligand.
A series of dinuclear Dy(III) compounds with the general formula [Dy2(μ2-anthc)4(anthc)2(L)2] (anthc(-) = 9-anthracenecarboxylate, L = 2,2'-bipyridyl (1), 1,10-phenanthroline (2), and 4,7-dimethyl-1,10-phenanthroline (3)) were synthesized and magnetically characterized. These compounds exhibit single-molecule magnet (SMM) behavior in the absence of the direct-current field, which is rarely observed for carboxylate-bridged dinuclear Dy2 system. With the first coordination sphere of Dy(III) centers being fixed, the energy barrier was modulated by sequentially modifying the terminal neutral L ligands in this Dy2 system. Theoretical calculations revealed that the symmetry of the charge distribution surrounding the Dy(III) centers in 1-3 is the decisive factor to determine the relaxation of the SMMs. The combination of the larger charge distribution along the magnetic axis and lower charge distribution in the equatorial plane (hard plane) formed by five coplanar coordination atoms including two N atoms provided by an L ligand led to a strong easy-axis ligand field in these compounds. This work presents a rational method to modulate the dynamic magnetic relaxation of the lanthanide SMMs through fine-tuning electrostatic potential of the atoms on the hard plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.