We have previously demonstrated that in a rat model of trauma-hemorrhage (T-H), glucosamine administration during resuscitation improved cardiac function, reduced circulating levels of inflammatory cytokines, and increased tissue levels of O-linked N-acetylglucosamine (O-GlcNAc) on proteins. The mechanism(s) by which glucosamine mediated its protective effect were not determined; therefore, the goal of this study was to test the hypothesis that glucosamine treatment attenuated the activation of the nuclear factor-kappaB (NF-kappaB) signaling pathway in the heart via an increase in protein O-GlcNAc levels. Fasted male rats were subjected to T-H by bleeding to a mean arterial blood pressure of 40 mmHg for 90 min followed by resuscitation. Glucosamine treatment during resuscitation significantly attenuated the T-H-induced increase in cardiac levels of TNF-alpha and IL-6 mRNA, IkappaB-alpha phosphorylation, NF-kappaB, NF-kappaB DNA binding activity, ICAM-1, and MPO activity. LPS (2 microg/ml) increased the levels of IkappaB-alpha phosphorylation, TNF-alpha, ICAM-1, and NF-kappaB in primary cultured cardiomyocytes, which was significantly attenuated by glucosamine treatment and overexpression of O-GlcNAc transferase; both interventions also significantly increased O-GlcNAc levels. In contrast, the transfection of neonatal rat ventricular myocytes with OGT small-interfering RNA decreased O-GlcNAc transferase and O-GlcNAc levels and enhanced the LPS-induced increase in IkappaB-alpha phosphorylation. Glucosamine treatment of macrophage cell line RAW 264.7 also increased O-GlcNAc levels and attenuated the LPS-induced activation of NF-kappaB. These results demonstrate that the modulation of O-GlcNAc levels alters the response of cardiomyocytes to the activation of the NF-kappaB pathway, which may contribute to the glucosamine-mediated improvement in cardiac function following hemorrhagic shock.
A prolonged depression of cardiovascular function occurs in males after trauma-hemorrhagic shock (T-H). Although a correlation between increased circulatory IL-6 levels and poor outcome has been reported after T-H, it remains unknown whether T-H increases IL-6 levels locally in cardiomyocytes and whether there is a correlation between altered cardiac function and local IL-6 production after T-H. T-H was induced in normal, castrated (2 wk before T-H), and 17β-estradiol (E2)-treated (0.5 mg sc, 1 wk before T-H) adult male rats. At 2 h after T-H or sham operation, cardiac output, heart rate, mean arterial pressure, positive and negative first derivative of pressure (±dP/d t), stroke volume, and total peripheral resistance were determined. Cardiomyocytes were isolated and divided into two parts: one was used for measurements of intracellular IL-6 levels using fluorescein-activated cell sorting, and the other was used to isolate RNA to determine IL-6 gene expression by quantitative real-time PCR. In addition, cardiac IL-6 protein levels were measured in freshly isolated hearts by Western blotting. Cardiac output, stroke volume, +dP/d t, −dP/d t, and total peripheral resistance were markedly altered after T-H. These parameters, except −dP/d t, improved significantly in the castrated group; however, all these parameters were restored in E2-treated males. Cardiomyocyte IL-6 mRNA expression and intracellular IL-6 production increased after T-H. Cardiac IL-6 protein levels increased after T-H in freshly isolated heart. Castration and E2 treatment attenuated cardiomyocyte intracellular IL-6 levels and cardiac IL-6 protein levels after T-H; however, only E2 treatment attenuated cardiomyocyte IL-6 gene expression. Thus there is an inverse correlation between cardiomyocyte IL-6 levels and cardiac function after T-H. The salutary effects of E2 on cardiac function after T-H may be due in part to decreased IL-6 synthesis in cardiomyocytes.
We have previously shown that administration of glucosamine after trauma-hemorrhage (TH) improved cardiac output and organ perfusion, and this was associated with increased levels of O-linked N-acetylglucosamine (O-GlcNAc) on proteins in the heart and brain. An alternative means of increasing O-GlcNAc levels is by inhibition of O-linked N-acetylglucosaminidase, which catalyzes the removal of N-acetylglucosamine from proteins, with O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate (PUGNAc). The goal of this study, therefore, was to determine whether PUGNAc administration after TH also improves recovery of organ perfusion and function. Fasted male rats were bled to and maintained at a mean arterial blood pressure of 40 mmHg for 90 min, followed by fluid resuscitation. Intravenous administration of PUGNAc (200 micromol/kg body weight) 30 min after the onset of resuscitation significantly improved cardiac output compared with the vehicle controls (12.3 +/- 1.3 mL/min per 100 g body weight vs. 25.5 +/- 2.0 mL/min per 100 g body weight; P < 0.05), decreased total peripheral resistance (6.6 +/- 0.8 mmHg/mL per minute per 100 g body weight vs. 3.7 +/- 0.3 mmHg/mL per minute per 100 g body weight; P < 0.05), and increased perfusion of critical organ systems, including the kidney and liver, determined at 2 h after the end of resuscitation. Treatment with PUGNAc also attenuated the TH-induced increase in plasma IL-6 levels (864 +/- 112 pg/mL vs. 392 +/- 188 pg/mL; P < 0.05) and TNF-alpha levels (216 +/- 21 pg/mL vs. 94 +/- 11 pg/mL; P < 0.05) and significantly increased O-GlcNAc levels in the heart, liver, and kidney. Thus, PUGNAc, like glucosamine, improves cardiac function and organ perfusion and reduced the level of circulating IL-6 and TNF-alpha after TH. The similar effects of glucosamine and PUGNAc support the notion that the protection associated with both interventions is mediated via increased protein O-GlcNAc levels.
Since cardiac function is depressed in males but not in proestrus (PE) females following trauma-hemorrhage (T-H), we examined whether different estrus cycles influence cardiac function in female rats under those conditions. We hypothesized that females in the PE cycle only will have normal cardiac function following T-H and resuscitation. Sham operation or T-H was performed in five groups of rats (250-275 g) including PE, estrus (E), metestrus (ME), diestrus (DE), and ovariectomized (OVX) females (n = 6-7 per group). Cardiac function was determined 2 h after T-H, following which cardiomyocytes were isolated and nuclei extracted. Cardiomyocyte IL-6 and NF-kappaB expressions were measured using Western blotting. Moreover, plasma IL-6, estradiol, and progesterone levels were measured using ELISA or EIA kits. Results (1-way ANOVA) indicated that following T-H, 1) cardiac function was depressed in DE, E, ME, and OVX groups but maintained in the PE group; 2) the PE group had the highest plasma estrogen level; 3) plasma IL-6 levels increased significantly in DE, E, ME, and OVX groups, but the increase was attenuated in the PE group; 4) cardiomyocyte IL-6 protein level increased significantly in DE, E, ME and OVX groups after TH, but the increase was attenuated in the PE group; and 5) cardiomyocyte NF-kappaB expression increased significantly but was attenuated in the PE group. These data collectively suggest that the estrus cycle plays an important role in cardiac function following TH. The salutary effect seen in PE following TH is likely due to a decrease in NF-kappaB-dependent cardiac IL-6 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.