Tumor necrosis factor (TNF)-α is a potent mediator of inflammation and is involved in the pathophysiology of chronic kidney disease (CKD). However, the effects of TNF-α inhibition on the progression of kidney fibrosis have not been fully elucidated. We examined the effects of TNF-α inhibition by etanercept (ETN) on kidney inflammation and fibrosis in mice with aristolochic acid (AA) nephropathy as a model of kidney fibrosis. C57BL/6 J mice were administered AA for 4 weeks, followed by a 4-week remodeling period. The mice exhibited kidney fibrosis, functional decline, and albuminuria concomitant with increases in renal mRNA expression of inflammation- and fibrosis-related genes. The 8-week ETN treatment partially but significantly attenuated kidney fibrosis and ameliorated albuminuria without affecting kidney function. These findings were accompanied by significant suppression of interleukin (IL)-1β, IL-6, and collagen types I and III mRNA expression. Moreover, ETN tended to reduce the AA-induced increase in interstitial TUNEL-positive cells with a significant reduction in Bax mRNA expression. Renal phosphorylated p38 MAPK was significantly upregulated by AA but was normalized by ETN. These findings indicate a substantial role for the TNF-α pathway in the pathogenesis of kidney fibrosis and suggest that TNF-α inhibition could become an adjunct therapeutic strategy for CKD with fibrosis.
Elevated angiotensin-converting enzyme 2 (ACE2) expression in organs that are potential targets of severe acute respiratory syndrome coronavirus 2 may increase the risk of coronavirus disease 2019 (COVID-19) infection. Previous reports show that ACE2 alter its tissue-specific expression patterns under various pathological conditions, including renal diseases. Here, we examined changes in pulmonary ACE2 expression in two mouse chronic kidney disease (CKD) models: adenine-induced (adenine mice) and aristolochic acid-induced (AA mice). We also investigated changes in pulmonary ACE2 expression due to renin–angiotensin system (RAS) blocker (olmesartan) treatment in these mice. Adenine mice showed significant renal functional decline and elevated blood pressure, compared with controls. AA mice also showed significant renal functional decline, compared with vehicles; blood pressure did not differ between groups. Renal ACE2 expression was significantly reduced in adenine mice and AA mice; pulmonary expression was unaffected. Olmesartan attenuated urinary albumin excretion in adenine mice, but did not affect renal or pulmonary ACE2 expression levels. The results suggest that the risk of COVID-19 infection may not be elevated in patients with CKD because of their stable pulmonary ACE2 expression. Moreover, RAS blockers can be used safely in treatment of COVID-19 patients with CKD.
Background
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is shown to prevent severe illness and death in hemodialysis (HD) patients, but the immune response to vaccines is reduced in this population. This study compared SARS-CoV-2 spike protein antibody titers between HD patients and healthy controls in Japan for up to 6 months following vaccination.
Methods
A multi-institutional retrospective study at five clinics in Japan was conducted using 412 HD patients and 156 healthy controls who received two doses of the BNT162b2 (Pfizer-BioNTech) mRNA vaccine. Anti-SARS-CoV-2 spike protein S1 IgG antibody titers were measured at 1, 3, and 6 months after the second dose. The attenuation speed was calculated as slope (i.e., –
β
) using a linear mixed-effects model toward the log-transformed antibody titers.
Results
The HD group had significantly lower month 1 antibody titers (Ab-titer-1) than the controls, and these remained lower through month 6 (95% CI: 2617.1 (1296.7, 5240.8) vs. 7285.4 (4403.9, 11,000.0) AU/mL at Ab-titer-1, and 353.4 (178.4, 656.3) vs. 812.0 (498.3, 1342.7) AU/mL at Ab-titer-6 (
p
< 0.001, respectively)). Lower log Ab-titer-1 levels in the HD group were significantly associated with a lower log Ab-titer–6 (0.90 [0.83, 0.97],
p
< 0.001). The –
β
values in the HD patients and healthy controls were –4.7 ± 1.1 and –4.7 ± 1.4 (year
−1
), respectively.
Conclusion
SARS-CoV-2 spike protein antibody titers were significantly lower in HD patients than in healthy controls at 1 (peak) and 6 months after the second vaccination. Low peak antibody titers contributed to low 6-month antibody titers.
Supplementary Information
The online version contains supplementary material available at 10.1007/s10157-022-02243-8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.