Myocardial cell injury caused by myocardial ischemia and reperfusion is one of the main causes of the occurrence and development of heart disease. Recent study has shown that inducing mitophagy of cardiomyocytes is a crucial method to alleviate ischemia-reperfusion injury. While, Polo-like kinase 1 (PLK1) can induce the mitophagy of breast cancer cells. Moreover, PLK1 was able to promote the expression of p-AMPK and FUNDC1, which are the protective factors for myocardium. Therefore, the mouse model of ischemia/reperfusion was established and the effect of PLK1 on ischemia reperfusion induced myocardial damage was investigated. The PLK1 was overexpressed in H9c2 cells and rat model of ischemia/reperfusion. Ischemia reperfusion inhibited the expression of PLK1. While overexpression of PLK1 relieved the myocardial infarction and myocardium apoptosis through inducing mitophagy in rats model of ischemia reperfusion. In vitro, the H9c2 cells overexpressing the PLK1 were treated with the hypoxia and reoxygenation and the apoptosis, survival rate and expression of mitophagy-related proteins of H9c2 cells were detected using the flow cytometry, CCK-8 assay and western blotting. The results reveled that overexpression of PLK1 alleviated the hypoxia and reoxygenation induced apoptosis of H9c2 cells and promoted the expression of mitophagy-related proteins. In addition, enhanced PLK1 expression promoted the expression of p-AMPK and FUNDC1 in H9c2 cells. However, the inhibition of FUNDC1 abolished the positive effect of PLK1 on H9c2 cells mentioned above. In conclusion, PLK1 alleviated the ischemia reperfusion induced myocardial damage by inducing the mitophagy in a p-AMPK/FUNDC1 signaling dependent pathway.
Background
Siglec-15 (S15) is a type-I transmembrane protein and is considered a new candidate of immune checkpoint inhibitor for cancer immunotherapy.
Methods
In the present study, we first constructed and characterized a chimeric S15-specific monoclonal antibody (S15-4E6A). Then, the antitumor effectiveness and modulatory role of S15-4E6A in macrophages (mφs) were explored in vitro and in vivo. Finally, the underlying mechanism by which S15mAb inhibits LUAD was preliminarily explored.
Results
The results demonstrated the successful construction of S15-4E6A, and S15-4E6A exerted an efficacious tumor-inhibitory effect on LUAD cells and xenografts. S15-4E6A could promote M1-mφ polarization while inhibiting M2-mφ polarization, both in vitro and in vivo.
Conclusions
S15-based immunotherapy that functions by modulating mφ polarization may be a promising strategy for the treatment of S15-positive LUAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.