Autologous vascular grafts are widely used in revascularization surgeries for small caliber targets. However, the availability of autologous conduits might be limited due to prior surgeries or the quality of vessels. Xenogeneic decellularized vascular grafts from animals can potentially be a substitute of autologous vascular grafts. Decellularization with high hydrostatic pressure (HHP) is reported to highly preserve extracellular matrix (ECM), creating feasible conditions for recellularization and vascular remodeling after implantation. In the present study, we conducted xenogeneic implantation of HHP-decellularized bovine vascular grafts from dorsalis pedis arteries to porcine carotid arteries and posteriorly evaluated graft patency, ECM preservation and recellularization. Avoiding damage of the luminal surface of the grafts from drying significantly during the surgical procedure increased the graft patency at 4 weeks after implantation (P = 0.0079). After the technical improvement, all grafts (N = 5) were patent with mild stenosis due to intimal hyperplasia at 4 weeks after implantation. Neither aneurysmal change nor massive thrombosis was observed, even without administration of anticoagulants nor anti-platelet agents. Elastica van Gieson and Sirius-red stainings revealed fair preservation of ECM proteins including elastin and collagen after implantation. The luminal surface of the grafts were thoroughly covered with von Willebrand factor-positive endothelium. Scanning electron microscopy of the luminal surface of implanted grafts exhibited a cobblestone-like endothelial cell layer which is similar to native vascular endothelium. Recellularization of the tunica media with alpha-smooth muscle actin-positive smooth muscle cells was partly observed. Thus, we confirmed that HHP-decellularized grafts are feasible for xenogeneic implantation accompanied by recellularization by recipient cells.
Autologous vascular grafts are widely used in revascularization surgeries for small caliber targets. However, the availability of autologous conduits might be limited due to prior surgeries or the quality of vessels. Xenogeneic decellularized vascular grafts from animals potentially substitute for autologous vascular grafts. Decellularization with high hydrostatic pressure (HHP) is reported to highly preserve extracellular matrix (ECM) which would be feasible for recellularization and vascular remodeling after implantation.In the present study, we conducted xenogeneic implantation of HHP-decellularized bovine vascular grafts from dorsalis pedis arteries to porcine carotid arteries then evaluated graft patency, ECM preservation and recellularization. Surgical procedure not to damage luminal surface of the grafts from drying significantly increased the graft patency at 4 weeks after implantation (P = 0.0079). After the technical improvement, all grafts (N = 5) were patent with mild stenosis due to intimal hyperplasia at 4 weeks after implantation. Neither aneurysmal change nor massive thrombosis was observed even without administration of anticoagulants nor anti-platelet agents. Elastica van Gieson and Sirius-red stainings revealed fair preservation of ECM proteins including elastin and collagen after implantation. Luminal surface of grafts was thoroughly covered with von Willebrand factor-positive endothelium. Scanning electron microscopy on luminal surface of implanted grafts exhibited cobblestone-like endothelial cell layer which is similar to native vascular endothelium. Recellularization of tunica media with alphasmooth muscle actin-positive smooth muscle cells was partly observed. Thus, we confirmed that HHP-decellularized grafts are feasible for xenogeneic implantation accompanied by recellularization by recipient cells. (243 words)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.