The effects of 14 days of spaceflight on myonuclear number, fiber size, and myosin heavy chain (MHC) expression in isolated rat soleus muscle fiber segments were studied. Single soleus muscle fibers from rats flown on the Spacelab Life Sciences-2 14-day mission were compared with those from age-matched ground-based control rats by using confocal microscopy and gel electrophoresis. Spaceflight resulted in a significant reduction in the number of fibers expressing type I MHC and an increase in the number of fibers expressing type IIx or IIa MHC. Space-flight also resulted in an increase in the percentage of fibers coexpressing more than one MHC and in the reexpression of the neonatal isoform of MHC in some fibers. Fiber cross-sectional area was significantly reduced in pure type I MHC-expressing fibers and in fibers coexpressing type I+II MHC but not in fibers expressing one or more type II MHC in the flight rats. The number of myonuclei per millimeter was significantly reduced in type I MHC-expressing fibers from the flight rats but was not significantly different in type I+II and type II MHC-coexpressing fibers. Fibers expressing neonatal MHC were similar in size to control fibers but had significantly fewer myonuclei per millimeter than flight fibers not expressing neonatal MHC. In type I MHC-expressing fibers, the reduction in fiber cross-sectional area was greater than the reduction in myonuclear number; thus the average cytoplasmic volume per myonucleus was significantly lower in flight than in control fibers. The reduction in both myonuclear number and fiber size of fibers expressing type I MHC after 14 days of spaceflight supports the hypothesis that changes in the number of myonuclei may be a contributing factor to the reduction in fiber size associated with chronic unloading of the musculature.
Succinate dehydrogenase (SDH) activities and soma cross-sectional areas (CSA) of neurons in the dorsolateral region of the ventral horn at the L5 segmental level of the spinal cord in the rat were determined after 14 days of spaceflight and after 9 days of recovery on earth. The results were compared to those in age-matched ground-based control rats. Spinal cords were quick-frozen, and the SDH activity and CSA of a sample of neurons with a visible nucleus were determined using a digitizer and a computer-assisted image analysis system. An inverse relationship between CSA and SDH activity of neurons was observed in all groups of rats. No change in mean CSA or mean SDH activity or in the size distribution of neurons was observed following spaceflight or recovery. However, there was a selective decrease in the SDH activity of neurons with soma CSA between 500 and 800 µm2 in the flight rats, and this effect persisted for at least 9 days following return to 1 g. It remains to be determined whether the selected population of motoneurons or the specific motor pools affected by spaceflight may be restricted to specific muscles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.