IL-18, a potent IFN-γ-inducing cytokine, is expressed by various nonimmune cells as well as macrophages, suggesting that it has important physiological and immunological roles. The present study focused on the mechanism of active IL-18 induction from human oral epithelial cells. The epithelial cells and the cell lines constitutively express IL-18 mRNA and the 24-kDa precursor form of IL-18. Bioactive IL-18 exhibiting IFN-γ-inducing activity was detected in the supernatant of the cells on costimulation with neutrophil proteinase 3 (PR3) and LPS for 24 h after IFN-γ-priming for 3 days. An active 18-kDa form of IL-18 was detected in lysate and supernatant of the cells only after the above treatment and the induction was inhibited by cycloheximide and by serine proteinase inhibitors. After the treatment, lactate dehydrogenase activity was not detected in the cell culture supernatant, and PR3 was detected only in the membrane and not in cytoplasm fractions of the cells. Caspase-1 was not detected in the cells even after the treatment and the IL-18 induction was not inhibited by a caspase-1 inhibitor. These results suggest that the PR3-mediated induction of bioactive IL-18 secretion from oral epithelial cells in combination with LPS after IFN-γ-priming occurred via a caspase-1-independent pathway, and provide new insight into the possible involvement of a neutrophil proteinase in the induction of bioactive IL-18 in oral inflammation such as periodontitis.
IL-18 is a proinflammatory cytokine and plays an important pathogenic role in inflammatory and autoimmune disorders. IL-17 is also a proinflammatory cytokine and IL-17-secreting Th17 cells are involved in autoimmunity. However, the pathological roles of IL-18 and Th17 cells in Sjögren’s syndrome (SS) remain to be elucidated. This study showed that the expression of IL-18 was detected in acinar cells, intraducts, and CD68+ macrophages in salivary glands of SS patients, but not in those of healthy subjects or patients with chronic graft-vs-host disease, by immunohistochemistry, and immunoblot analysis revealed that 24-kDa precursor form of IL-18 (proIL-18) and 18-kDa mature IL-18 were detected in SS salivary glands. The majority of the infiltrating cells in the salivary glands of SS patients were CD4+ T cells, and CD8+ T cells were infiltrated to a lesser extent. The predominant expression of IL-17 was found in infiltrating CD4+ T cells, whereas a small number of infiltrating CD8+ T cells expressed IL-17. Human salivary gland HSY and acinar AZA3 cells constitutively expressed proIL-18 and caspase-1, and a calcium ionophore A23187 induced the secretion of IL-18 from the cells. HSY and AZA3 cells expressed IL-18R and IL-17R on the cell surface, and IL-18 amplified the secretion of IL-6 and IL-8 that were induced by low amounts of IL-17. Primary salivary gland cells from normal subjects partially confirmed these findings. These results suggest that IL-18 and Th17 cells detected in the salivary glands in SS patients are associated with the pathogenesis of SS in the salivary glands.
The cytokine‐inducing activities of fungal polysaccharides were examined in human monocytes in culture, with special reference to CD14 and Toll‐like receptors (TLRs). Tumor necrosis factor alpha (TNF‐α) production by monocytes was markedly induced in a dose‐dependent manner upon stimulation with cell walls from Candida albicans and mannan from Saccharomyces cerevisiae and C. albicans, although relatively high concentrations (10 to 100 μg/ml) of stimulants were required for activation as compared with the reference lipopolysaccharide (LPS) (1 to 10 ng/ml). The yeast form C. albicans and its mannan and cell wall fractions exhibited higher TNF‐α production than respective preparations from the hyphal form. Only slight TNF‐α production was induced by the S. cerevisiae glucan. The TNF‐α production triggered by reference LPS and purified fungal mannans required the presence of LPS‐binding protein (LBP), and these responses were inhibited by anti‐CD14 and anti‐TLR4 antibodies, but not by anti‐TLR2 antibody. In contrast to the activity of LPS, the activity of purified S. cerevisiae mannan was not inhibited by polymyxin B. These findings suggested that the mannan‐LBP complex is recognized by CD14 on monocytes and that signaling through TLR4 leads to the production of proinflammatory cytokines in a manner similar to that induced by LPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.