Inevitable interferences exist for the SAR system, adversely affecting the imaging quality. However, current analysis and suppression methods mainly focus on the far-field situation. Due to different sources and characteristics of interferences, they are not applicable in the near field. To bridge this gap, in the first time, analysis and the suppression method of interferences in near-field SAR are presented in this work. We find that echoes from both the nadir points and the antenna coupling are the main causes, which have the constant-time-delay feature. To characterize this, we further establish an analytical model. It reveals that their patterns in 1D, 2D and 3D imaging results are all comb-like, while those of targets are point-like. Utilizing these features, a suppression method in image domain is proposed based on low-rank reconstruction. Measured data are used to validate the correctness of our analysis and the effectiveness of the suppression method.
Images of near-field SAR contains spatial-variant sidelobes and clutter, subduing the image quality. Current image restoration methods are only suitable for small observation angle, due to their assumption of 2D spatial-invariant degradation operation. This limits its potential for large-scale objects imaging, like the aircraft. To ease this restriction, in this work an image restoration method based on the 2D spatial-variant deconvolution is proposed. First, the image degradation is seen as a complex convolution process with 2D spatial-variant operations. Then, to restore the image, the process of deconvolution is performed by cyclic coordinate descent algorithm. Experiments on simulation and measured data validate the effectiveness and superiority of the proposed method. Compared with current methods, higher precision estimation of the targets' amplitude and position is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.