To investigate the effect of quenching rate on microstructure, residual stress (RS) and mechanical properties of a rare-earth wrought magnesium alloy Mg-Gd-Y-Zr-Ag-Er, RS in 20 °C water quenching (WQ (20 °C)), 100 °C water quenching (WQ (100 °C)) or air cooling (AC) conditions were measured and compared with the simulation results, corresponding mechanical properties and microstructure in quenching and aging state were studied. The decrease of quenching rate has little effect on the grain size but makes the twinning disappear, precipitates increase and the texture weakened, leading to easier brittle fracture after aging. WQ (100 °C) is the best quenching condition in this study, with a significant decline in RS and only 4.9% and 3.7% decrease in yield stress (YS) and hardness compared with WQ (20 °C). The results make it feasible to invent an appropriate quenching method of greatly reducing RS while maintaining mechanical properties. The research conclusions would be beneficial to the application of the alloy.
The thermal deformation behavior of the Mg–Gd–Y–Zr–Ag alloy was studied by isothermal hot compression tests at high temperatures. The flow stress increased with increased strain rates and decreased temperatures, first increasing and finally remaining stable with increased strain. A hot processing map was built. Using the processing map and microstructural analysis, the temperature should remain at 673–773 K for this alloy to ensure the deformation quality. The primary softening mechanism is discontinuous dynamic recrystallization (DDRX). Rising temperatures and declining strain rates facilitated the emergence and growth of Dynamic recrystallization (DRX) grains. An original JC (O–JC) model and a modified JC (M–JC) model were established. The M–JC model indicated a better prediction than the O–JC model. Still, it was deficient in predicting flow stresses with insufficient coupling effects. Hence, based on the M–JC model, a newly modified JC (NM–JC) model, which further enhances the interaction between strain and strain rate as well as strain and temperature, is proposed. Its projected values can better align with the tested values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.