In this paper, a novel water-based reconfigurable frequency selective rasorber (FSR) at microwave band is proposed, which has a thermally tunable absorption band above the transmission band. The water-based FSR consists of a bandpass type frequency selective surface (FSS) and a 3D printing container. The water substrate is filled into the sealed space constructed by the above two structures. The numerical simulation results show that the FSR can achieve absorption with high absorptivity from 8.3 to 15.2 GHz, and obtain a transmission band of 5.2 to 7.0 GHz. The minimum insertion loss of the transmission band reaches 0.72 dB at 6.14 GHz. In addition, the FSR has the reconfigurable characteristics of absorbing or reflecting electromagnetic waves by filling with water or not. The proposed water-based FSR shows its good transmission/absorption performance under different polarizations and oblique incident angles. Due to the Debye model of water, the absorption band can be adjusted by water temperature, while the passband remains stable. At last, prototype of the FSR based on water has been fabricated, and the experimental results are presented to demonstrate the validity of the proposed structure.
Solar arrays are the primary energy source of the satellite. In this paper, a metamaterial absorber for solar arrays with simultaneous high optical transparency and broadband microwave absorption is presented. By tailoring the reflection response of meta-atoms, 85% absorption performance from 6.8GHz to 18GHz is obtained. In the meantime, by employing transparent substrates, including indium tin oxide (ITO) film and anti-reflection glass, a maximum of 87% light transmittance is achieved. The absorptivity of the proposed metamaterial absorber is simulated and measured experimentally. Light transmittance and the effect of transparent metamaterial absorber on the conversion efficiency of the solar array have also been measured. These results fully demonstrate the reliability of our design for solar arrays, which also meet the requirements of structural strength, atomic oxygen erosion resistance, weight limitation, etc.
A polarization-independent reconfigurable frequency selective rasorber (FSR)/absorber with low-insertion loss (IL) based on diodes is proposed in this article. The presented structure consists of a lossy layer based on square loops and a bandpass frequency-selective surface. These two layers are separated by an air layer. Each layer has an embedded bias network that provides the bias voltage to the diodes through metallic via. This configuration can avoid undesirable effects associated with the additional biasing wire. When the diodes are in off-state, the structure is in FSR mode and exhibits a transmission window at 4.28 GHz with only 0.69 dB IL within the absorption bands. While diodes are in on-state and the structure switches to absorber mode, it achieves perfect absorption with absorptivity of over 90% ranging from 2.8 to 5.2 GHz. An equivalent circuit model is developed to analyze the physical mechanism of the structure. A prototype of the proposed architecture is fabricated and measured, where reasonable agreements between simulations and measurements are observed, verifying the effectiveness of this design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.