We have previously shown that poly(I:C) activates murine hepatic cells to produce interferon (IFN) and suppresses hepatitis B virus (HBV) replication in vitro. Therefore, we addressed whether poly(I: C
Functional maturation of liver sinusoidal endothelial cells (LSECs) induced by a NOD1 ligand (diaminopimelic acid [DAP]) during viral infection has not been well defined. Thus, we investigated the role of DAP-stimulated LSEC maturation during hepatitis B virus (HBV) infection and its potential mechanism in a hydrodynamic injection (HI) mouse model. Primary LSECs were isolated from wild-type C57BL/6 mice and stimulated with DAP in vitro and in vivo and assessed for the expression of surface markers as well as for their ability to promote T cell responses via flow cytometry. The effects of LSEC maturation on HBV replication and expression and the role of LSECs in the regulation of other immune cells were also investigated. Pretreatment of LSECs with DAP induced T cell activation in vitro. HI-administered DAP induced LSEC maturation and subsequently enhanced T cell responses, which was accompanied by an increased production of intrahepatic cytokines, chemokines, and T cell markers in the liver. The HI of DAP significantly reduced the HBsAg and HBV DNA levels in the mice. Importantly, the DAP-induced anti-HBV effect was impaired in the LSEC-depleted mice, which indicated that LSEC activation and T cell recruitment into the liver were essential for the antiviral function mediated by DAP application. Taken together, the results showed that the Ag-presenting ability of LSECs was enhanced by DAP application, which resulted in enhanced T cell responses and inhibited HBV replication in a mouse model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.