SUMMARYCross-view action recognition is a challenging research field for human motion analysis. Appearance-based features are not credible if the viewpoint changes. In this paper, a new framework is proposed for cross-view action recognition by topic based knowledge transfer. First, Spatio-temporal descriptors are extracted from the action videos and each video is modeled by a bag of visual words (BoVW) based on the codebook constructed by the k-means cluster algorithm. Second, Latent Dirichlet Allocation (LDA) is employed to assign topics for the BoVW representation. The topic distribution of visual words (ToVW) is normalized and taken to be the feature vector. Third, in order to bridge different views, we transform ToVW into bilingual ToVW by constructing bilingual dictionaries, which guarantee that the same action has the same representation from different views. We demonstrate the effectiveness of the proposed algorithm on the IXMAS multi-view dataset. key words: cross-view human action recognition, topic distribution of visual words, latent dirichlet allocation, bilingual dictionary
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.