Following a hemispheric stroke, various degrees of neuronal reorganization around the lesion occur immediately after disease onset and thereafter up to several months. These include transcallosal excitability, changes of the intact motor cortex and ipsilateral motor responses after transcranial magnetic stimulation (TMS) on the intact hemisphere. To elucidate the relationship between lesion localization and motor cortex excitability (intracortical inhibition; ICI) in the intact hemisphere, we applied a paired conditioning-test TMS paradigm in 12 patients with unilateral cortical stroke (cortical group) and nine patients with subcortical stroke caudal to the corpus callosum (subcortical group), with interstimulus intervals varying from 1 to 10 ms. All patients exhibited unilateral complete hand palsy. ICI was significantly less in the cortical group than in age-matched healthy control subjects. It was especially more marked in the cortical group patients with a disease duration of less than 4 months after onset. Patients in the cortical group with a duration longer than 4 months showed a tendency for ICI to be normalized, and there was a significant correlation between ICI and disease duration. Patients in the subcortical group showed normal excitability curves. All patients in the cortical group showed no transcallosal inhibition (TCI) in the active unaffected hand muscle after TMS of the affected motor cortex, whereas all the subcortical patients showed some TCI. No ipsilateral motor responses were elicited in the paretic hand in any of the patients. The reduced ICI in the cortical group might have been a result of disruption of TCI. The normalization of ICI in the patients with longer disease duration and the normal ICI in the subcortical group patients do not support the functional significance of motor cortex hyperexcitability in the unaffected hemisphere, at least in a patient population with poor motor recovery.
To clarify the alterations of tau, amyloid beta protein (A beta) 1-40 and A beta1-42(43) in the cerebrospinal fluid (CSF) that accompany normal aging and the progression of Alzheimer's disease (AD), CSF samples of 93 AD patients, 32 longitudinal subjects among these 93 AD patients, 33 patients with non-AD dementia, 56 with other neurological diseases, and 54 normal control subjects from three independent institutes were analyzed by sensitive enzyme-linked immunosorbent assays. Although the tau levels increased with aging, a significant elevation of tau and a correlation between the tau levels and the clinical progression were observed in the AD patients. A significant decrease of the A beta1-42(43) levels and a significant increase of the ratio of A beta1-40 to A beta1-42(43) were observed in the AD patients. The longitudinal AD study showed continuous low A beta1-42(43) levels and an increase of the ratio of A beta1-40 to A beta1-42(43) before the onset of AD. These findings suggest that CSF tau may increase with the clinical progression of dementia and that the alteration of the CSF level of A beta1-42(43) and the ratio of A beta1-40 to A beta1-42(43) may start at early stages in AD. The assays of CSF tau, A beta1-40, and A beta1-42(43) provided efficient diagnostic sensitivity (71%) and specificity (83%) by using the production of tau levels and the ratio of A beta1-40 to A beta1-42(43), and an improvement in sensitivity (to 91%) was obtained in the longitudinal evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.