Hair follicle regeneration involves epithelial-mesenchymal interactions (EMIs) of follicular epithelial and dermal papilla (DP) cells. Co-grafting of those cellular components from mice allows complete hair reconstitution. However, regeneration of human hair in a similar manner has not been reported. Here, we investigated the possibility of cell-based hair generation from human cells. We found that DP-enriched cells (DPE) are more critical than epidermal cells in murine hair reconstitution on a cell number basis, and that murine DPE are also competent for hair regeneration with rat epidermal cells. Co-grafting of human keratinocytes derived from neonatal foreskins with murine DPE produced hair follicle-like structures consisting of multiple epidermal cell layers with a well-keratinized innermost region. Those structures expressed hair follicle-specific markers including hair keratin, and markers expressed during developmental stages. However, the lack of regular hair structures indicates abnormal folliculogenesis. Similar hair follicle-like structures were also generated with cultured human keratinocytes after the first passage, or with keratinocytes derived from adult foreskins, demonstrating that epidermal cells even at a mature stage can differentiate in response to inductive signals from DP cells. This study emphasizes the importance of EMI in follicular generation and the differentiation potential of epidermal keratinocytes.
Recently, we reported that heparanase plays important roles in barrier-disrupted skin, leading to increased interaction of growth factors between epidermis and dermis and facilitating various cutaneous changes, including epidermal hyperplasia and wrinkle formation. However, the role of heparanase in sun-exposed skin remains unknown. Here, we show that heparanase in human keratinocytes is activated by ultraviolet B (UVB) exposure and that heparan sulfate of perlecan is markedly degraded in UVB-irradiated human skin. The degradation of heparan sulfate resulted in a marked reduction of binding activity of the basement membrane for vascular endothelial growth factor, fibroblast growth factor-2 and -7 at the dermal-epidermal junction. Degradation of heparan sulfate was observed not only in acutely UVB-irradiated skin, but also in skin chronically exposed to sun. Interestingly, heparan sulfate was found to be degraded in sun-exposed skin, but not in sun-protected skin. These findings suggest that chronic UVB exposure activates heparanase, leading to degradation of heparan sulfate in the basement membrane and increased growth factor interaction between epidermis and dermis. These changes may facilitate photo-aging.
Daily sunlight exposure damages the epidermal basement membrane (BM) and disrupts epidermal homeostasis. inter-follicular epidermal stem cells (ife-Scs) regulate epidermal proliferation and differentiation, which supports epidermal homeostasis. Here, we examine how photoaging affects the function of ife-Scs and we identify key components in their cellular environment (niche). We found that sun-exposed skin showed a decrease of MCSP-positive and β1-integrin-positive cells concomitantly with a decrease of laminin-511 at the dermal-epidermal junction (DEJ), as compared with sun-protected skin. Higher levels of laminin-511 were associated with not only increased efficiency of colony formation, but also higher expression levels of MCSP as well as other stem cell markers such as Lrig1, ITGB1, CD44, CD46, DLL1, and K15 in keratinocytes from skin of 12-to 62-yearold subjects. UVB exposure to cultured human skin impaired laminin-511 integrity at the dermalepidermal junction and reduced MCSP-positive basal epidermal cells as well as K15-positive cells. combined treatment with matrix metalloproteinase and heparanase inhibitors protected the integrity of laminin-511 and inhibited the reduction of MCSP-positive cells and K15-positive cells. These results suggest that photoaging may reduce the levels of MCSP-positive and K15-positive epidermal stem/ progenitor cells in the epidermis via loss of laminin-511 at the dermal-epidermal junction. Abbreviations TEWL Transepidermal water loss MMP(s) Matrix metalloproteinase(s) UVB Ultraviolet B HS Heparan sulfate MCSP Melanoma-associated chondroitin sulphate proteoglycan DEJ Dermal-epidermal junction IFE-SCs Interfollicular epidermal stem cells BM Basement membrane SE Skin equivalent The skin is a multilayered organ that protects the organism against environmental stressors. The outermost layer of the skin is the epidermis, which has a high turnover rate owing to the continuous shedding (desquamation) of the uppermost cornified cells. This is a part of the process of forming the water-impermeable barrier, the stratum corneum. In human skin tissue, both the epidermal cell turnover rate and barrier function are impaired with aging. In skin tissue, which has a high cell turnover, the role of resident stem cells is crucial for ensuring equilibrium between cell loss and cell division, i.e., for maintaining homeostasis. Stem cells are instrumental in epidermal renewal, regeneration, and repair, and the integrity of a mammalian epidermis requires the proliferation of stem cells and the differentiation of their progeny 1. Multiple pools of stem cells are located in different epidermal
Daily exposure to sunlight is known to affect the structure and function of the epidermal basement membrane (BM), as well as epidermal differentiation and epidermal barrier function. The aim of this study is to clarify whether the inhibition of BM‐degrading enzymes such as heparanase and matrix metalloproteinase 9 (MMP‐9) can improve the epidermal barrier function of facial skin, which is exposed to the sun on a daily basis. 1‐(2‐hydroxyethyl)‐2‐imidazolidinone (HEI) was synthesized as an inhibitor of both heparanase and MMP‐9. HEI inhibited not only the BM damage at the DEJ but also epidermal proliferation, differentiation, water contents and transepidermal water loss abnormalities resulting from ultraviolet B (UVB). This was determined in this study by the use of UVB‐induced human cultured skins as compared with the control without HEI. Moreover, topical application of HEI improved epidermal barrier function by increasing water content and decreasing transepidermal water loss in daily sun‐exposed facial skin as compared with non‐treated skins. These results suggest that the inhibition of both heparanase and MMP‐9 is an effective way to care for regularly sun‐exposed facial skin by protecting the BM from damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.