Aquaporins (AQP) play important roles in water and glycerol transport. We examined whether AQP3 is expressed in primary squamous cell carcinoma (SCC) such as esophageal and oral cancer and lymph node metastasis, and whether AQP3 is a potential target for tumor therapy. A high level expression of AQP3 was observed in tumor areas of human primary SCC such as esophageal and lingual cancers, and lymph node metastasis, but was not observed in normal areas. Treatment with pan-AQP inhibitor caused apoptotic cell death on the SCC cell lines in a concentration-dependent manner. Small interfering RNA (siRNA) specific for AQP3 also inhibited cell adhesion and growth of SCC, but not those of adenocarcinoma cell lines and fibroblasts. Expression of integrin a5 and b1, counter adhesion molecules for fibronectin, was inhibited by treatment with AQP3-siRNA. The phosphorylation of focal adhesion kinase (FAK) was decreased by treatment with AQP3-siRNA, which then caused decreases in phosphorylation of Erk and MAPK. These results indicate that the decreases in integrins and the inhibition of cell adhesion might cause inhibition of the FAK signaling pathways. Combination of AQP3-siRNA with cisplatin, a major anti-cancer drug, strongly inhibited the growth of SCC. Cell death caused by the inhibition of AQP3 was a result of direct interference with cell adhesion involving intracellular FAK-MAPK signaling pathways. These results imply a potentially important and novel role for the inhibition of AQP3 function via the use of specific siRNA in the treatment of SCC. (Cancer Sci 2011; 102: 1128-1136 H uman squamous cell carcinoma (SCC) is a major neoplasm in the esophagus or oral cavity and its incidence has recently been increasing.(1-3) The optimal treatment or therapy for early carcinoma is a surgical operation. However, overall survival remains largely unchanged.(1,3,4) Therefore, different therapies for the inhibition of tumor cell growth are required.The aquaporin (AQP) family is a membrane protein involved in the selective transport of water across cell membranes. Several subsets of AQP also transport small molecules such as glycerol and urea.(5-9) Among them, AQP3 is known to be expressed in various organs such as kidney, skin, lung and gastrointestinal tracts and to play important roles in the transport of water and glycerol. (10)(11)(12) Recent studies reported the expression of AQP3 in several cancers such as skin, lung and prostate. (13)(14)(15)(16)(17) However, there are few reports about the exact role of AQP3 on the cell growth of squamous cell carcinomas (SCC) such as esophageal or lingual cancers.We investigated whole genome analysis using a DNA microarray to find potential target genes that are involved in tumor cell growth, and reported the critical role of several important molecules on the cell growth of SCC. (18)(19)(20)(21) According to previous study and the results of a DNA microarray, we found that expression of AQP3 mRNA was observed in cell lines of SCC and the AQP3 expression level was altered by the inhibitio...
Aquaporins (AQPs) are a membrane protein family involved in the selective transport of water across cell membranes. Recent studies have reported the expression of AQP5 in several tumor types such as gastric, pulmonary, ovarian, pancreatic and colorectal cancer. We have previously reported the expression on tumor cells and the important role of AQP3 on cell growth in tongue cancer. However, little is known about the expression and precise role of AQP5 on squamous cell carcinoma (SCC) of the tongue. We investigated the expression of AQP5 and AQP3 in human oral SCC and adenoid cystic carcinoma (ACC). Overexpression of both AQP5 and AQP3 were immunohistochemically observed on tumor cells in SCC, whereas ACC cells were faintly stained with those antibodies against AQPs. Treatment with pan-AQP inhibitor or specific AQP5-siRNA showed inhibition of cell growth in SCC cell lines via the inhibition of integrins and the mitogen-activated protein kinase pathway. AQPs play important roles in cell growth in SCC rather than ACC.
Endothelin plays important roles in various physiological functions including vascular constriction. Recent studies reported that the endothelin receptors ETA and ETB are highly expressed in lung and skin tumor tissues. In contrast, there are few reports on endothelin signalling in the proliferation of head and neck cancer. We found that both ETA and ETB endothelin receptors were overexpressed in tumor cells of tongue cancer samples by immunohistochemistry. ETA and ETB were expressed in cultured lingual and esophageal squamous cell carcinoma (SCCs) cell lines. When both cultured cell lines were treated with an ETA selective antagonist (BQ123) or an ETB selective antagonist (BQ788), inhibition of cell growth was observed. Similar results were observed when SCCs were treated with specific siRNA for the suppression of ETA or ETB. Furthermore, inhibition of the mitogen-activated protein (MAP) kinase pathway by the treatments with ET receptor antagonists and siRNA was also observed. These results indicate that endothelin signalling may, in part, play important roles in cell growth in SCCs through the MAP kinase pathway.
Background:Modified radical neck dissection (mRND) [preserving the sternocleidomastoid muscle (SCM) and the spinal accessory nerve] and supraomohyoid neck dissection have become common surgical procedures for treating head and neck cancer. Postoperative severe asymmetry of the neck and severe atrophy of the SCM, however, have been demonstrated.Methods:Using computed tomographic images, cross-sectional areas of the SCMs were measured in 99 patients with carcinoma of the oral cavity who underwent unilateral mRND or supraomohyoid neck dissection. An asymmetry index was used.Results:Innervation to the SCM was preserved in 91 patients. The spinal accessory nerve and the innervation were sacrificed in 3 patients; the innervation was repaired in 5 patients. Sacrifice of innervation to the SCM resulted in extremely severe asymmetry. Repair of the innervation prevented severe asymmetry in 40%. Preservation of the innervation prevented severe asymmetry in 75% at the middle portion of the neck and in 56% at the lower portion after mRND.Conclusion:Preserving innervation to the SCM and gentle handling of the nerve during neck dissection could prevent severe asymmetry after neck dissection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.