We have studied the formation of stripe patterned films of ordered particle arrays on completely solvophilic substrates by using a self-organization technique. In this method, a substrate immersed in a suspension is withdrawn vertically at a controlled temperature. We have also systematically examined the effects of several experimental parameters. Well-defined stripes spontaneously form at the air-solvent-substrate contact line because of a very dilute suspension in a quasi-static process. The stripe width depends on particle concentration, withdrawal rate, and surface tension, while the stripe spacing depends on the thickness of stripes, surface tension, and type of substrate. A stripe width and the adjacent spacing show a clear correlation, strongly indicating the synchronized formation of a stripe and the next spacing. The evaporation rate does not affect stripe width and spacing but determines the growth rate of stripe patterned films. Based on these results, we propose a new mechanism for stripe formation, which is neither a stick-slip motion of the contact line nor dewetting but a negative feedback of particle concentration caused by a concavely curved shape of the meniscus, demonstrating not only its qualitative but also its quantitative validity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.