Clipping was shown to be a safe treatment modality in our cohort, and treatment selection may better be made on a case-by-case basis in most patients with SAH-induced TCM. The lack of correlation between the degree of cardiac dysfunction and outcomes indicates that aggressive intervention is justified in patients with severely impaired cardiac function.
Recent progress in neuro-oncology has validated the significance of genetic diagnosis in gliomas. We previously investigated IDH1/2 and TP53 mutations via Sanger sequencing for adult supratentorial gliomas and reported that PCR-based sequence analysis classified gliomas into three genetic subgroups that have a strong association with patient prognosis: IDH mutant gliomas without TP53 mutations, IDH and TP53 mutant gliomas, and IDH wild-type gliomas. Furthermore, this analysis had a strong association with patient prognosis. To predict genetic subgroups prior to initial surgery, we retrospectively investigated preoperative radiological data using CT and MRI, including MR spectroscopy (MRS), and evaluated positive 5-aminolevulinic acid (5-ALA) fluorescence as an intraoperative factor. We subsequently compared these factors to differentiate each genetic subgroup. Multiple factors such as age at diagnosis, tumor location, gadolinium enhancement, 5-ALA fluorescence, and several tumor metabolites according to MRS, such as myo-inositol (myo-inositol/total choline) or lipid20, were statistically significant factors for differentiating IDH mutant and wild-type, suggesting that these two subtypes have totally distinct characteristics. In contrast, only calcification, laterality, and lipid13 (lipid13/total Choline) were statistically significant parameters for differentiating TP53 wild-type and mutant in IDH mutant gliomas. In this study, we detected several pre- and intraoperative factors that enabled us to predict genetic subgroups for adult supratentorial gliomas and clarified that lipid13 quantified by MRS is the key tumor metabolite that differentiates TP53 wild-type and mutant in IDH mutant gliomas. These results suggested that each genetic subtype in gliomas selects the distinct lipid synthesis pathways in the process of tumorigenesis.
Genetic subgrouping of gliomas has been emphasized recently, particularly after the finding of isocitrate dehydrogenase 1 (IDH1) mutations. In a previous study, we investigated whole-chromosome copy number aberrations (CNAs) of gliomas and have described genetic subgrouping based on CNAs and IDH1 mutations. Subsequently, we classified gliomas using simple polymerase chain reaction (PCR)-based methods to improve the availability of genetic subgrouping. We selected IDH1/2 and TP53 as markers and analyzed 237 adult supratentorial gliomas using Sanger sequencing. Using these markers, we classified gliomas into three subgroups that were strongly associated with patient prognoses. These included IDH mutant gliomas without TP53 mutations, IDH mutant gliomas with TP53 mutations, and IDH wild-type gliomas. IDH mutant gliomas without TP53 mutations, which mostly corresponded to gliomas carrying 1p19q co-deletions, showed lower recurrence rates than the other 2 groups. In the other high-recurrence groups, the median progression-free survival (PFS) and overall survival (OS) of patients with IDH mutant gliomas with TP53 mutations were significantly longer than those of patients with IDH wild-type gliomas. Notably, most IDH mutant gliomas with TP53 mutations had at least one of the CNAs +7q, +8q, −9p, and −11p. Moreover, IDH mutant gliomas with at least one of these CNAs had a significantly worse prognosis than did other IDH mutant gliomas. PCR-based mutation analyses of IDH and TP53 were sufficient for simple genetic diagnosis of glioma that were strongly associated with prognosis of patients and enabled us to detect negative CNAs in IDH mutant gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.