Herein, a method for predicting real-time removal rate and friction coefficient between the pad and substrate during chemical mechanical polishing was investigated using only the load currents of two motors of a polisher. Polishers for semiconductor devices are equipped with various sensors, enabling a real-time prediction of the removal amount. The polishers used to polish substrates are not usually equipped with sensors, and the polishing time is fine-tuned by skilled-technicians to achieve the desired substrate thickness. However, since every polisher has some motors, predicting the removal rate and friction coefficient using only the real-time data produced by these motors would be beneficial. This study attempts to predict the removal rate and friction coefficient in long-time polishing using a training dataset obtained from short-time polishing. Results showed that by performing extremely low-pressure, long-time polishing to understand the polisher characteristics and then subtracting the polisher characteristics from the motor information during long-time polishing, highly accurate predictions of the removal rate and friction coefficient within ~94% in percent match (prediction accuracy) between the experimental and predicted values can be obtained. Furthermore, slurry degradation during CMP can be monitored using this prediction method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.